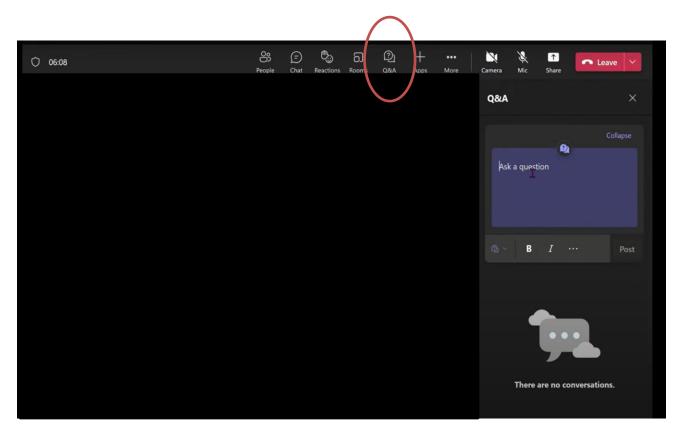
HVDC Replicas Explained

What? Why? When? Where? How?

Suresh Rangasamy & Fabian Moore Simulation Engineers, HVDC Centre

19 November 2024



General Housekeeping

This webinar will be recorded and once approved, uploaded to <u>hvdccentre.com</u>

Using the Q&A Function in Teams

Ask Question:

- Open Q&A panel by clicking the Q&A icon in the meetings controls
- Type your question in the "Ask a question" field and click Post

Find the Q&A Function

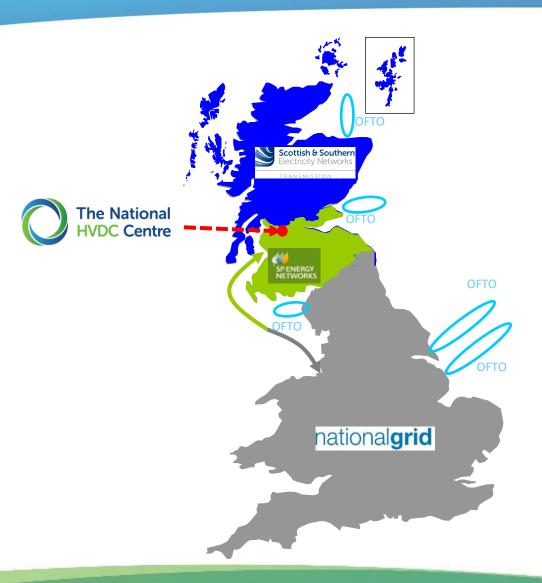
• If you don't see the Q&A icon, click on **More(...)** in the meeting controls to find it

Troubleshooting

 If you are unable to post your question, try leaving and rejoining the webinar

Agenda

- Who are we? Introducing The National HVDC Centre
- What are HVDC replicas? Different types of HVDC Replica
- Why are HVDC replicas used? De-risking different project stages
- How are HVDC replicas used? Real-life examples
- Where & When? The practicalities of getting a replica
- Our future plans HVDC Centre Extension
- **Q & A** Your chance to ask questions



Who are we? Introducing The National HVDC Centre

The National HVDC Centre – Location & Ownership

TRANSMISSION

Onshore Transmission Owner (TO)

nationalgrid

Other GB Onshore **Transmission Owners**

and

National Energy System **Operator**

Stakeholders / Advisory board

HVDC Centre: In a Nutshell

The National HVDC Centre delivers world-leading simulation, training and innovation; to de-risk, accelerate and enhance GB's efficient transition to a resilient Net Zero network.

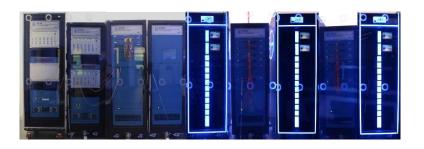
Opened in 2017 Originally an Ofgem Innovation Project.

23 Employees From Manufacturers,

Utilities & Academia

Bespoke 1,030m² Facility [+ new extension planned]

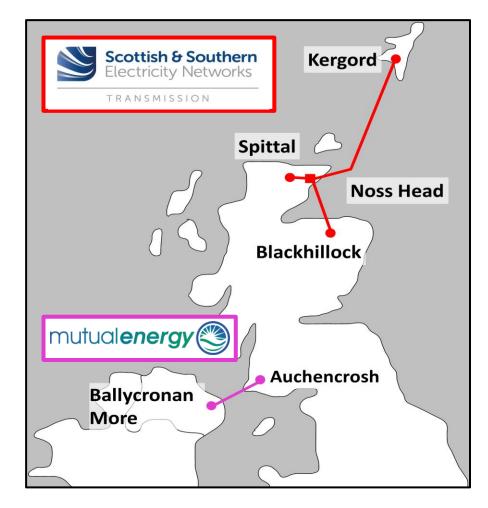
A Team of Industry Experts



Core Innovation \ **Projects Projects** NIA, SIF & Regulated Horizon Allowance Europe **Commercial Projects Customer Funded**

State-of-the-art Simulation Infrastructure:

- Real-time Simulators: RTDS, OPAL-RT
- GTSOCs & Power Amplifiers
- High-Power Off-line Simulation PCs
- Software: PSCAD, PowerFactory, PSSE, MATLAB

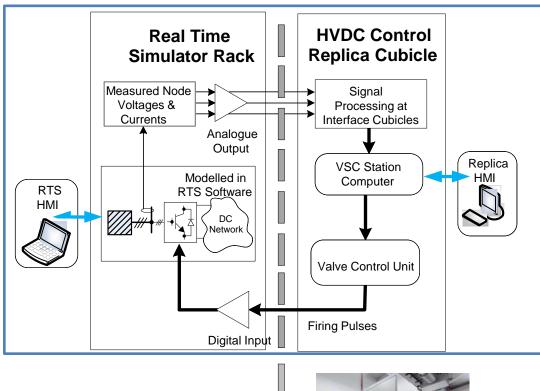


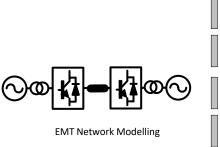
HVDC Replica Hosting

- The HVDC Centre hosts protection & control hardware replicas for two real-world HVDC schemes
- These replicas are exact copies of the control and protection hardware used on site
- We are planning to host more replicas in future

Caithness-Moray-Shetland (CMS) Replica

Moyle Replica


What are HVDC Replicas?


Different types of HVDC replica

What are Replicas?

Real C&P systems

- "Replica panels" for an HVDC project are physical duplicates of the control & protection (C&P) systems, which can simulate HVDC performance in real time
- Real Time Simulation: computer model of a physical system that executes at the same rate as the actual time. (i.e., in the range of µs)
- The replica can be used to analyse the electrical behaviour of the system, but it can also be used to support maintenance activities related to the control and protection cubicles.
- Not including operator training aids, which duplicate HMI interfaces – our definition of replica focuses on control/Protection & simulation functionalities

Types of Replica

Software-In-Loop Replica

The controller software is uploaded to dedicated/ RTS hardware to study the core C&P performance of the system

Hardware is from a third-party supplier.

Software-In-Loop

Study Replica*

A set of cubicles limited to the main control and protection functions that have an impact on the electrical behaviour of the HVDC system

- With one C&P system
- Study the core C&P performance of the system without compromising much in the C&P hardware
- Test software upgrades before real implementation

e.g. CMS, Moyle

Maintenance Replica*

A set of cubicles to support maintenance actions on-site on the real system

- Training & preparation of maintenance
- Spares, avoid OEM warranty need
- Includes redundancy in C&P system
- Switchover / changeover logics (A—B)

e.g. INELFE (RTE)

Hardware-In-Loop (HIL)

HVDC Replicas: Hardware-in-the-Loop (HIL)

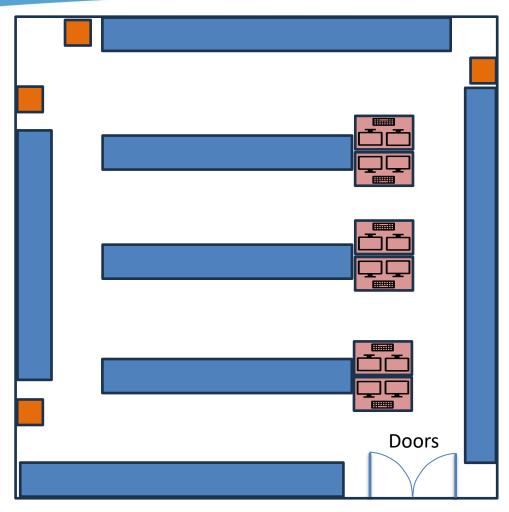
EMT Network Model

Digital / Analogue Input Signals

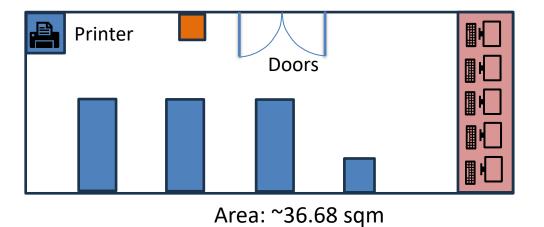
Digital / Analogue

Output Signals

Replica Protection & Control Hardware



- Performance of equipment can be evaluated with simulated events.
- Solutions can be developed and refined.

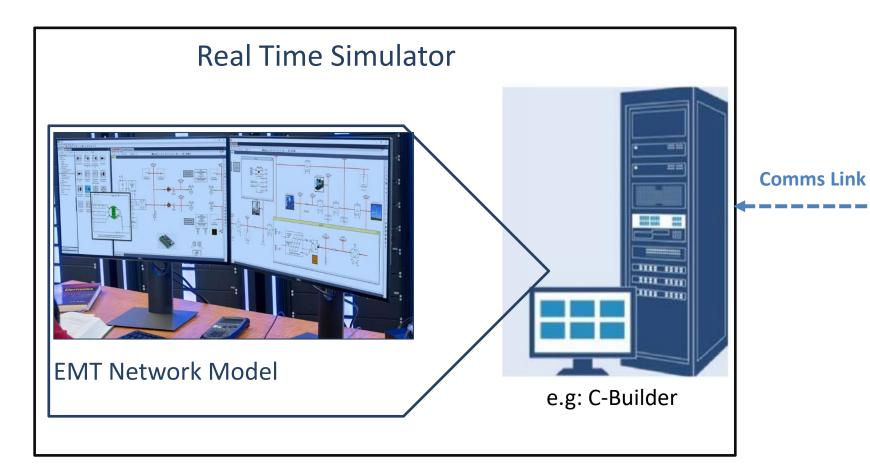


HVDC Replicas: Hardware-in-the-Loop (HIL)

Area: ~96.68 sqm

Air Conditioning

Replica Panels


HMI / Operator Desks

TRANSMISSION

HVDC Replicas: Software-in-the-Loop (SIL)

Black-box software implementation of controller

GTSOC- Gigabit Transceiver System On-a-Chip

Examples include:

- Fast PC running "IntervalZero" real-time software
- RTDS "GTSOC" product

HVDC Replicas: Hardware vs Software

Replica Protection & Control Hardware

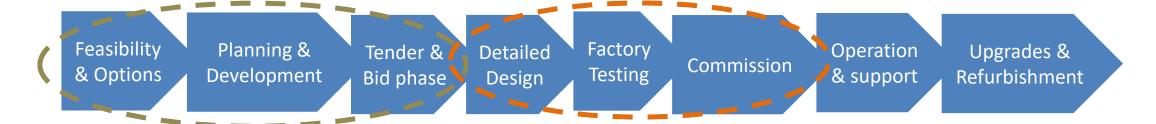
Black-box software implementation of controller

- + Real Control & Protection (C&P) algorithms
- + Real C&P hardware
- + Real-time testing
- + Operator training on real hardware and real HMI
- + Diagnose hardware/implementation issues
- Physical space & physical hardware (expensive)

Potentially more useful to support commissioning & operation tasks because it uses real hardware.

- + Realistic Control / Protection algorithms
- + Real-time testing
- + Flexible
- + Uses generic hardware (much less physical space)
- Lack of standard approach
- Limitations with generic hardware

A flexible solution that is available earlier in the project before physical hardware is manufactured.



Why are HVDC replicas used?

De-risking different project stages

HVDC Project Lifecycle – Analysis Tools (General) The National HVDC Centre

Developing a specification:

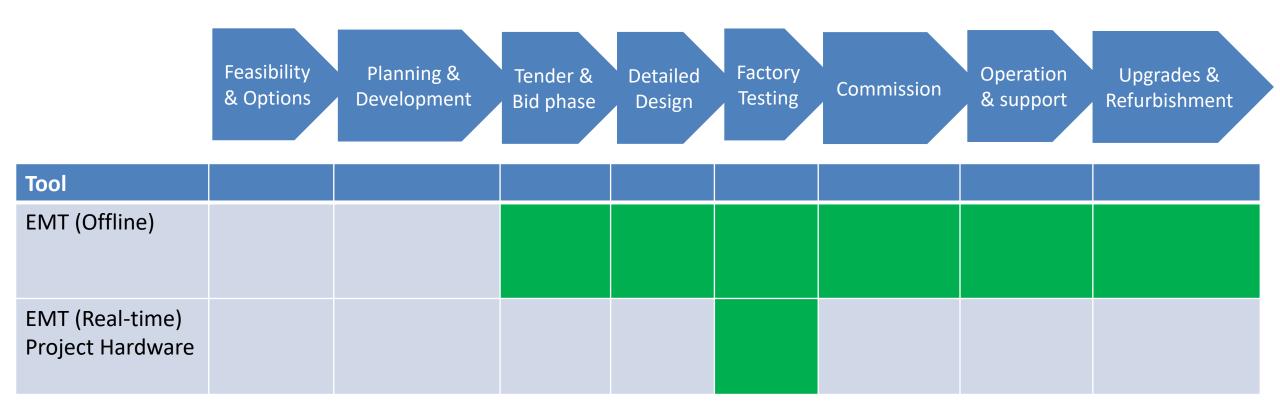
- Identify Expectations & Needs
- Comparing Solutions/Options

High-level Analysis Tools:

- Load Flow & Short Circuit Studies (Steady-State)
- Transient & Dynamic Studies (RMS)
- Generic Models
- Screening & Small-Signal Studies

Delivering a solution:

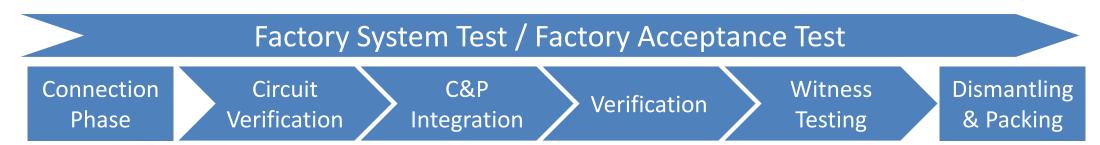
- Detailed design work
- Assessing design performance


Detailed Analysis Tools:

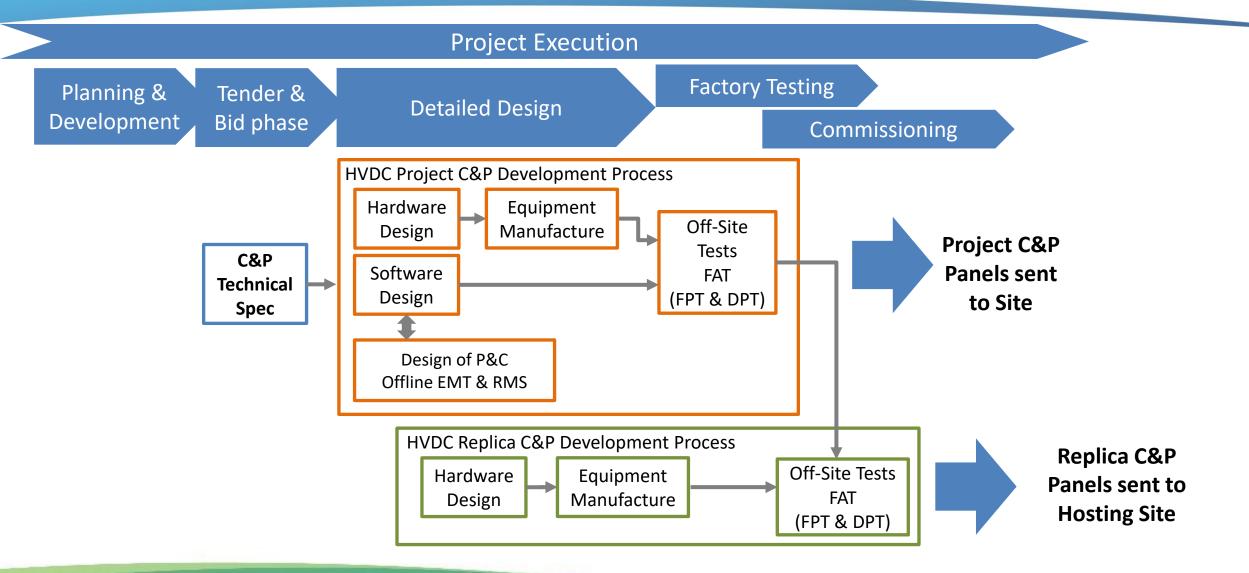
- Electromagnetic Transient (EMT) Studies:
 - EMT (Offline) Vendor black-box models
 - EMT (Real-time) Hardware-in-the-Loop

HVDC Project Lifecycle – Analysis Tools (EMT)

Green blocks show project stages where EMT studies carried out using detailed/vendor specific models & hardware (Far from exhaustive!)

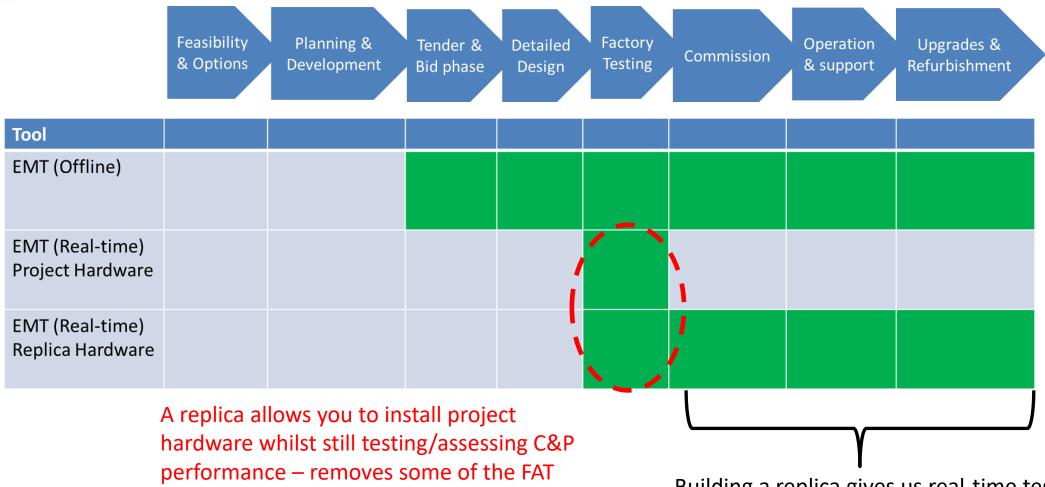

Real-time EMT simulation (HiL) is used to test the project hardware during the **Factory Testing** stage

Factory Tests of HVDC C&P Systems


- <u>Factory Acceptance Tests (FAT)</u> to demonstrate that the control and protection hardware and software perform according to the specification.
 - Only the most important C&P hardware (e.g., Pole Control, Station Control, DC Protections, etc.,) are included
- <u>Functional Performance Test (FPT)</u> verify the operation of the individual cubicles and correct interaction, functionality, and interfacing of involved components and systems.
- <u>Dynamic Performance Test (DPT)</u> checks the dynamic and transient interactions between the DC and AC systems as well as to verify the project-specific control and DC protection functions and parameters.
- System Integration Test Phase confirms that the performance of the upcoming HVDC system is compatible with existing HVDC systems (multi-infeed studies).

Stages of HVDC C&P Delivery (with a replica)

Installation at The Centre



HVDC Project Lifecycle – Why Replicas?

testing work from the project critical path

Building a replica gives us real-time testing capability for later project stages, using real hardware

HVDC Project Lifecycle – Why Replicas?

Transmission networks are changing fast & becoming more complex.

HVDC replicas provide:

- a safe environment to test HVDC link performance & HVDC behaviour
- an opportunity to move some of the FAT testing work from the critical path for the HVDC project
- access to real-time EMT test facilities after FAT tests have been completed

Emerging uses:

- Hardware HVDC Replicas provide a safe environment to test Cybersecurity & Software updates
- GB Grid code allows for Real-time simulator models to be specified in User BCAs

PC.A.9.5	Replica Control Systems, RTDS, RSCAd
PC.A.9.5.1	Where required by the Bilateral Agreement, the User shall provide replica and/or suitable Real Time Dynamic Simulator models. The details of any s uch rmodels will be included in the Bilateral Agreement.

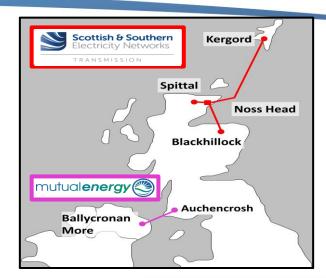
Microsoft IT outage

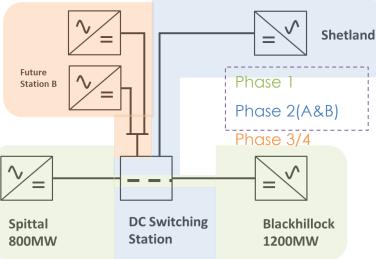
● This article is more than 3 months old

CrowdStrike global outage to cost US Fortune 500 companies \$5.4bn

How are HVDC replicas used?

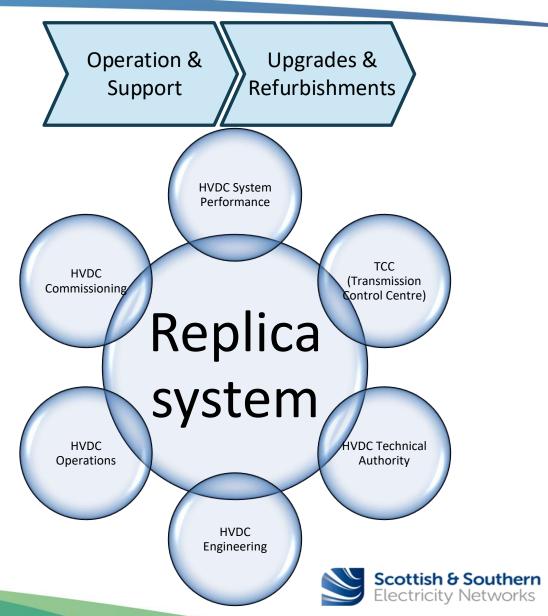
Real-life examples



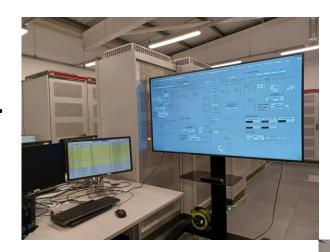

Replicas: Practical Use

Moyle

- Replica was initially used by Siemens Energy in Erlangen for factory tests.
- Hosted at the HVDC Centre in Cumbernauld since December 2022.
- Has since been used to diagnose issues and check new controller settings.
- Tested updates to control code before they were applied to the Moyle Link.
- Potential to test software/IT updates.
- Caithness-Moray-Shetland (CMS)
 - Installed at the HVDC Centre in 2017 (Phase 1) when the Caithness-Moray leg was commissioned.
 - DCSS (Phase-2A) and Shetland extension in 2022-2024 (Phase-2B)



CMS Replica: Practical Use


- System Integration tests
 - Integrating DCSS and Shetland to the existing Point-to-Point HVDC link in the replica
 - Testing AC Protection IEDs
 - Integrating SIL-Windfarm models into the replica system (ongoing)
- DPT and FPT:
 - DCSS commissioning verifying the switching sequences and interlocks.
 - Shetland commissioning verifying the dynamic performance and functional performance tests of the Multi-Terminal HVDC system

CMS Replica: Practical Use

- Operational Support:
 - Energisation of the converter from the DC side due to operational constraints.
 - Test new firmware/software updates for the electronic components within the C&P system.

- Routinely used to:
 - Train operational staff
 - Diagnose/analyse issues
 - Test code/controller updates

Where & When?

The practicalities of getting a replica

Where? – Some Practicalities for Replicas

Replicas could be hosted at:

- HVDC converter station site
- HVDC owner offices
- Third party hosts (like us)
- Central/state authority or utility

Sites need to have:

- Physical security (control of access to replicas, alarm, CCTV)
- Cyber security
- Protection for IP
- Security vetted staff
- Sufficient space / real-estate

Other things to think about:

- Co-location of different replicas/models to allow them to be tested together
- Who will be using the replica?
- Skill & experience of the staff
- Provision of real-time simulator hardware

When? - Some Practicalities for Replicas

Feasibility & Options

Planning & Development

Tender & Bid phase

Detailed Design

Factory Testing

Commission

Operation & support

Upgrades & Refurbishment

Discuss replica with vendors & replica hosts at earliest opportunity

Replica included in specification for tender/bid

Development of real-time models

Replica hardware used for acceptance testing

Replica used to support commissioning

Replica installation on Site

Replica used to support operation (e.g. training, code updates, incidents, interactions)

Replica support & maintenance from vendor

Replica hosting support (in-house and third-party host)

Decide replica type

Decide replica installation/hosting location

Review replica vendor proposals

Agree replica hosting agreement

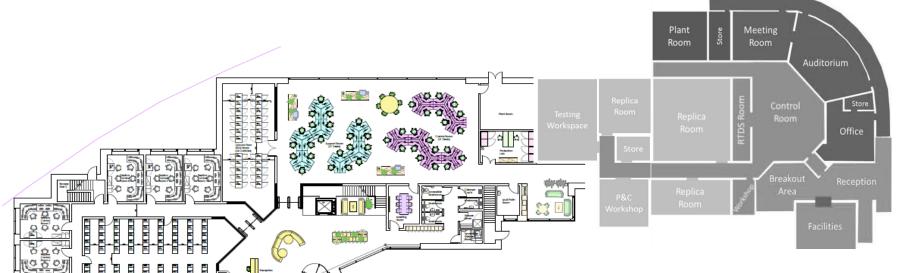
Like all tasks, it is best to start early!



HVDC Centre - Current Facilities

The HVDC Centre provides a secure hosted environment:

- Real-time simulation capability & experience
- Managed physical & cyber security
- Experienced & security vetted staff
- A common location that allows replicas to be tested together
- Experience specifying and using HVDC replicas
- Offline tools PSCAD, Power factory, PSSE, Matlab.



A suite of replica management documents is available to support our replica customers

HVDC Centre - Future Plans

- A new two-level extension to accommodate ~20 additional hardware replicas
- Corresponding expansion of real-time simulator hardware, office space and staff
- Part of RIIO-T3 funding submission by SSEN Transmission (2026-2031)

Thanks for listening.

Any questions, please?

For further information, please visit www.hvdccentre.com or email info@hvdccentre.com

Follow our Linkedin page The National HVDC Centre for regular updates.