

RECENT DEVELOPMENTS IN HVDC MODELING FOR THE RTDS SIMULATOR

AGENDA


- New developments for renewables and energy storage
- Fully digital interconnection to P&C
- Vendor black box models
- Question and Answer Session
- Demo

RENEWABLES and ENERGY STORAGE

- Wind
- Solar
- Battery Energy Storage (BESS)
- Fuel cell
- Pumped hydro
- Flywheel

Devices Under Test

UNIVERSAL CONVERTER MODEL (UCM)

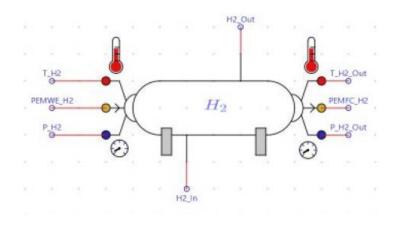
Renewables and energy storage are connected to the grid via converters

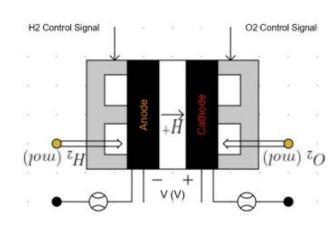
- Investment made to develop more precise, versatile and robust model
- Multiple topologies supported
 - o 2-level, NPC (ANPC), T-type, boost and buck, flying capacitor, DAB topologies
- Multiple input modes
 - Modulation Waveform (essentially an average model)
 - Full Firing Pulse (reads firing pulse once per simulation timestep)
 - Improved Firing (with Mean Value High Precision)
 - Captures firing pulses within a timestep at high resolution to calculate how much of the timestep the switch should be "on" (producing an effective duty cycle)
 - Multiple turn-on/turn-off transitions per timestep are allowed
 - 10 ns firing resolution
- Available in Mainstep and Substep
 - o Mainstep allows 10 kHz PWM with 40 μs timestep
 - o Substep allows 150 kHz PWM

UNIVERSAL CONVERTER MODEL (UCM)

Renewables and energy storage are connected to the grid via converters

- Other average model implementations decoupled on the DC bus can cause instability
- UCM has no decoupling on the DC and does not use interface lines to connect to the network solution (i.e. the converter is embedded)
- Improved performance with a reduced computational burden
- External firing pulse control testing using GTDI v2 with 10 ns resolution


UNIVERSAL CONVERTER MODEL (UCM)


Benefits

- Use of resistive switching allows losses to be defined by the user
- Proper transitioning from blocked to deblocked states UCM incorporates proprietary predictive switching technique from Substep models
- Improved Firing represents the characteristic harmonics very well and introduces minimal non-characteristic harmonics
- Good results even with a 30-50 us timestep no need to maintain very small timesteps like other simulators which use decoupled models fit many detailed converter models on a significantly reduced quantity of hardware

MULTI-ENERGY SIMULATION: HYDROGEN

- New electrolyser model created
- Hydrogen storage component to incorporate effect of inlet fluid temp and pressure
- Updated fuel cell component

FULLY DIGITAL CONNECTION TO P&C

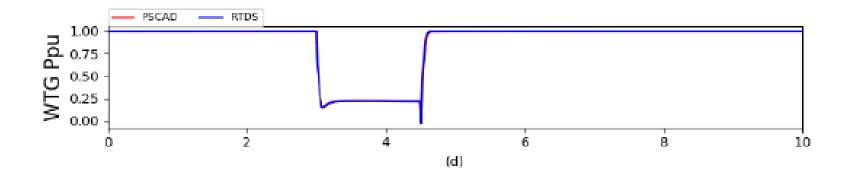
- RTDS Technologies is working with HVDC and FACTS vendors to support fully digital interconnection of P&C to the RTDS Simulator
- Allow project testing to start earlier and reduce footprint and cost of replica simulators
- Protocols available or underdevelopment
 - o Aurora
 - o IEC 61850 GOOSE and MMS
 - o IEC 61850 Sampled Values (including 96, 200 and 250 kHz)
 - o DNP3 and IEC 60870-5-104
 - o Modbus
 - EtherCAT (under development)

SUPPORT FOR VENDOR BLACK BOX MODELS

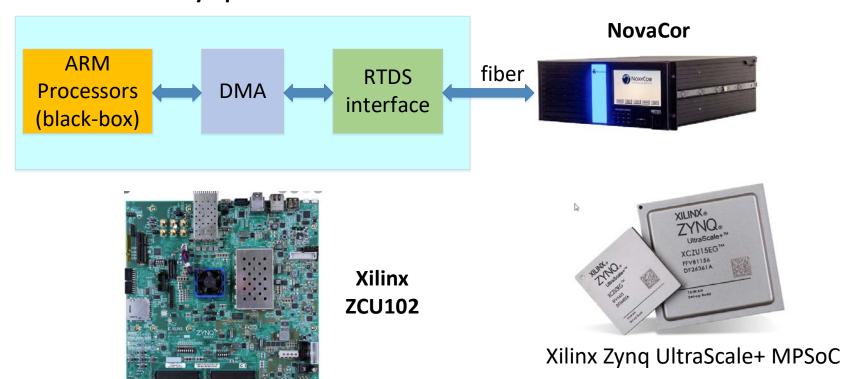
- Vendors need a mechanism to securely share proprietary models with 3rd parties
- Support for original code base is optimal
- Real time operation requires code to be compiled for the target platform
- DLLs created for offline simulation (e.g. PSCAD) cannot be used for real time
- RTDS Technologies has developed two solutions to support real time black box models

INTERVAL ZERO SOLUTION

Required by manufacturers to protect their IP


- DLLs require MS Windows
 - Use Windows co-processing platform
- Standard Windows OS suffers from substantial jitter
 - o Not practical for hard real time simulation
- Interval Zero offers a RTOS to work alongside Windows
 - Limitation is the code needs to be compiled using Interval Zero software or Statically Linked Libraries are required
- Direct Ethernet link using NovaCor UDP port
 - o Optimized communication techniques utilized

INTERVAL ZERO SOLUTION


- Integrated Vestas control DLL into RSCAD proof of concept for any manufacturer's black box control DLLs
- Implemented 1 PPC and 4 wind turbine controllers communicating with the RTDS Simulator
- Excellent comparison to PSCAD
- User Spotlight Series recording available with presentation from Vestas

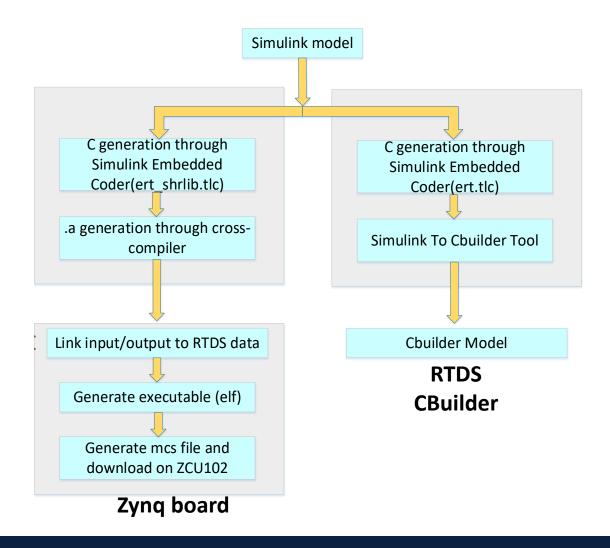
Second solution

Zynq board

Note: Xilinx ZCU102 for experiment Custom board coming soon

? Linux OS on Zynq board running Dynamic library (.so)

The problem is the undeterministic execution time spike ~ 200 us, hard to eliminate without specialized real-time Linux OS support.


✓ Bare metal on Zynq board running Static library (.a)

Bare metal guarantees deterministic timing: <1us jitter.

Procedure using Simulink

A batch file is provided to compile the C code generated from Simulink. This batch file can automatically generates the required .a and .so files.

Procedure directly from C code or C++ using GNU cross-compiler

- > Two batch files are provided for generating .a and .so files
 - One for general C
 - ❖ One for general C++

```
) 2017 Microsoft Corporation. All rights reserved.
  \ZCU102\mycontroller>compile C.bat mycontroller
                       2021-10-01
                                             COPYRIGHT (c) RTDS TECHNOLOGIES INC. 2021
BUILDING FILES: "*.c"
BUILDING TARGETS: "*.o"
INVOKING: ARM V8 GCC BARE-METAL (.a) COMPILER
COMPILING D:\ZCU102\mycontroller\test.c
 RM V8 GCC BARE-METAL (.a) COMPILER SUCCESSFUL
BUILDING FILES: "*.o"
BUILDING TARGET: "libmycontroller.a"
INVOKING: ARM V8 BARE-METAL (.a) ARCHIVER
  M V8 BARE-METAL (.a) ARCHIVER SUCCESSFUL
DELETED "D:\ZCU102\mycontroller\test.o"
 JILDING COMPLETE, FILE:
                         "libmycontroller.a
BUILDING FILES: "*.c"
BUILDING TARGETS: "*.o"
INVOKING: ARM V8 GCC LINUX (.so) COMPILER
COMPILING D:\ZCU102\mycontroller\test.c
 RM V8 GCC LINUX (.so) COMPILER SUCCESSFUL
BUILDING FILES: "*.o"
BUILDING TARGET: "libmycontroller.so"
INVOKING: ARM V8 GCC LÍNUX (.so) LINKER
 RM V8 GCC LINUX (.so) LINKER SUCCESSFUL
DELETED "D:\ZCU102\mycontroller\test.o"
 JILDING COMPLETE, FILE:
                         "libmycontroller.so
PREPARING OUTPUT FOLDER
COPYING FILES
D:\ZCU102\mycontroller\rtds.h -> D:\ZCU102\mycontroller\TO RTDS\rtds.h
 :\ZCU102\mycontroller\libmycontroller.a -> D:\ZCU102\mycontroller\TO_RTDS\libmycontroller.a
1 File(s) copied
 :\ZCU102\mycontroller\libmycontroller.so -> D:\ZCU102\mycontroller\TO_RTDS\libmycontroller.so
 File(s) copied
  LES COPIED TO "D:\ZCU102\mycontroller\TO_RTDS", please zip all files and send to RTDS Technologies Inc. Thank you.
```

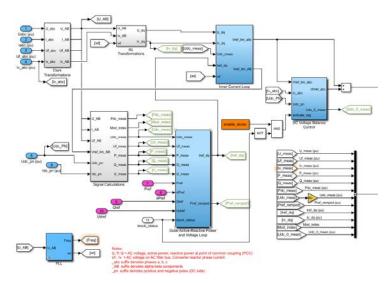

Testing

- ☐ Test Scenarios
 - Single static library on Zynq
 - ✓ STATCOM
 - ✓ VSC-HVDC
 - Multiple static library on Zynq
 - ✓ STATCOM+VSC-HVDC
 - Single static library with multiple instances on Zynq
 - ✓ Two STATCOM Instances
 - ❖ Synchronous mode: Static Library simulation step size is set by users. RTDS simulation timestep must be the same as used to create the static library.
 - Asynchronous mode: Static Library simulation step size is set by users. RTDS simulation timestep could be set independently.

Testing – VSC Based HVDC Case

Power System Circuit:

Anti-aliasing Filters

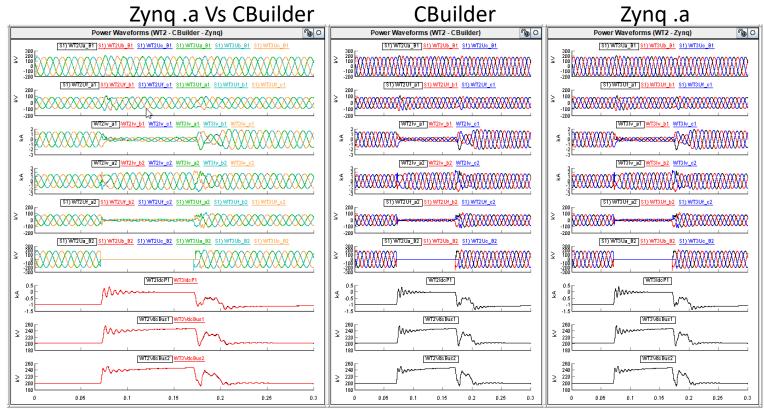

- Control Systems:
 - ☐ Two Station Controllers
 - ☐ Each Station includes:
 - Anti-aliasing Filters
 - o Outer-loop controller
 - o Inner-loop controller
 - o DC Voltage Balance
 - o Others

Station2_Controller

Vdc_Vsc.slx

Station1 Controller

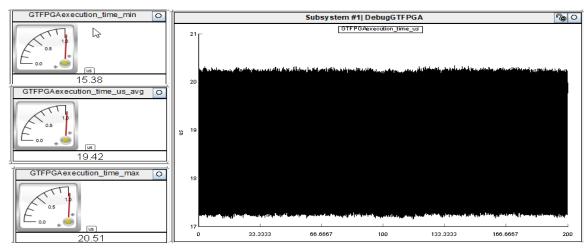
OUTPUT



Reference Simulink case: power_hvdc_vsc.slx

4 Testing

4.4 Test Results: VSC-HVDC



3-phase ac grounding fault in Station 2

Testing - Timing

Test Case	Timing (Average, us)	Test Case	Timing (Average, us)
STATCOM + Interface	13.55	STATCOM*N	7.94*N
(VSC-HVDC) + Interface	11.48	VSC-HVDC	5.74
STATCOM + (VSC-HVDC) +Interface	19.42	Interface	5.87

Timing Measurement for Multiple Static Library (STATCOM + VSC-HVDC)

THANK YOU! QUESTIONS?

