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Abstract- This paper develops a small-signal impedance model 

of modular multilevel converters (MMCs) using harmonic state-

space (HSS) method and studies the stability in a multiple 

converter scenario. In order to simplify analysis on the coupling 

characteristics between different frequencies in MMCs, the 

proposed model is developed in the positive-negative-zero (PN0) 

sequence-frame, where the zero-sequence current in three-phase 

three-wire system is directly set to zero without introducing 

complicated method. A simple 2 by 2 admittance matrix in PN0-

frame is extracted from the MMC small-signal model for ease of 

system stability analysis. Using the developed impedance model, 

the multi-infeed interaction factor (MIIF) measure is adopted to 

analyze the most significant interactions for multi-infeed 

converter systems to be prioritized. Different outer-loop 

controllers are adopted and compared in the analysis to illustrate 

the effect of different control modes on converter impedance and 

system stability. Analytical studies and time-domain simulation 

results are provided to validate the proposed model and stability 

analysis. 

Index Terms- Admittance, harmonic state-space (HSS), modular 

multilevel converter (MMC), stability. 

I.  INTRODUCTION 

With rapidly increased penetration of renewable energy and 

distributed generation, and the increased use of HVDC systems 

for interconnection and renewable integration, system stability 

of grid-connected converters becomes a significant challenge 

[1]. Hence, effective methods to identify the source of 
resonance and to mitigate the stability problems becomes 

critically important. To assess the system stability and dynamic 

interactions between grid and converters, the impedance-based 

stability analysis [2][3] is an effective method of identifying 

potential frequencies of disturbance to which an individual 

converter may be vulnerable to destabilizing behavior. 

Therefore, an accurate impedance modelling of converters is 

required. Modular multilevel converter (MMC) is now being 

widely used for HVDC systems [4-6]. However, due to its 

inherently complex behavior such as internal circulating current 

and submodule (SM) capacitor voltage ripple, accurately 

modelling the impedance or admittance of MMC is a 
challenging task [7][8]. The consequences of not modelling 
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these aspects could lead to a displacement or deletion of 

frequencies of interaction and a mis-estimation of the 

magnitude of the impedance changes at those points. 
Various studies have been carried out on developing MMC 

impedance models. In [9], an analytical sequence impedance 

model of a three-phase MMC is derived with the internal MMC 

dynamics, following the same approach used for 2-level VSCs. 

However, the 2nd harmonic in the arm current and PLL are not 

considered in the model. In [10], the AC side input admittances 

of the MMC under various control strategies are derived, 

though the circulating current controller is not included. 
Reference [11] focuses on the impact of different current-

control schemes on the shape of MMC admittance, considering 

the 2nd internal harmonic current. However, a large resistive 

load is added at the AC side to provide increased passive 

damping, so that high-order harmonics are not presented in the 

system and not considered in [11]. However, in real systems, 

such strong passive damping does not exist and harmonic or 

inter-harmonic resonances are a major concern and must be 

modelled.  

The Harmonic State-Space (HSS) method proposed to 
analyze linear time-periodic (LTP) system [12], models not 

only the steady-state harmonics in LTP systems, but also the 

dynamics of the harmonics during transients. Consequently, 

HSS method has been widely used to model power networks 

and converters, e.g., static synchronous compensators [13], 

LCC converters [12], transmission lines [14], and two-level 

VSCs [15]. Recently, HSS method has been used to model 

MMC impedance considering the impact of the internal 

harmonics [16]-[18]. Since the Fourier coefficients matrices in 

the HSS model are diagonal-constant matrices (Toeplitz 

matrices) [16], the MMC small-signal model based on HSS can 

be easily extended to any harmonic order. Hence, the dynamics 
of high-order harmonics in MMC can be fully considered. 

However, various problems and limitations still exist in the 

proposed HSS-based MMC small-signal modelling methods 

[16]-[18]. In [16], a single-phase MMC model is developed and 

the impedance that reflects the voltage and current at the same 

frequency is derived but the couplings at different frequencies 

generated by the internal harmonics of MMC, are not taken into 

account. Impedance models of three-phase four-wire MMC 

systems, in which both the MMC DC mid-point and the AC 

neutral point are grounded providing a circulation path for the 

zero-sequence current, are derived in [17][18]. However, in 
reality, MMC systems are likely to be configured as an 

equivalent three-phase three-wire system without the low 

impedance path for the zero-sequence current. To describe the 

MMC zero-sequence current on the MMC AC side in three-

phase three-wire systems, zero-sequence voltage compensation 

is proposed to add into the single-phase model in [17] and the 
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single-phase impedance is obtained for three-phase system 

stability assessment. The MMC controllers in the models also 

adopt the proportional resonant (PR) controller in the abc-

frame, implying that the controls for phase a, b, and c are totally 

independent and identical. However, for MMC controller 
implemented in αβ-frame or dq-frame, the single-phase 

modelling method is inadequate and is thus unsuitable for three-

phase MMC system.  

In the latest study on MMC impedance modelling, reference 

[19] provides a comprehensive three-phase HSS model of 

MMC. Similar to [17], the DC mid-point voltage is 

compensated using the AC neutral point voltage to eliminate 

the zero-sequence current. However, when developing the 

small-signal model, the expression of the neutral point voltage 

involves the steady-state value and the perturbation variables of 

three-phase voltages as well as the control signal of the arms, 

which lead to an extra complex calculation in the HSS model. 
In [19], the complex vector representation of the controllers in 

dq-frame obtained based on the transfer function, has to be 

transformed to the αβ-frame before being integrated into the 

MMC model to obtain the impedance in the positive-negative-

zero (PN0) sequence frame, thus leading to complicated 

transformation and calculation. 

In addition, the MMC impedance obtained in [19] is a 10 by 

10 matrix. In order to simplify the process of stability 

assessment, a single input and single output (SISO) equivalent 

impedance of the MMC is derived by considering the grid side 

impedance. However, if the grid structure is more complex, e.g., 
there are other converters connected to the grid in close 

proximity, the grid impedance seen by the MMC will also 

become complicated. Thus it is difficult to simplify the 10 by 

10 matrix of MMC impedance to a SISO equivalent. Therefore, 

a MMC impedance independent of the grid side impedance and 

in simple form is more beneficial for system stability 

assessment with multiple converters. MMC represented by 2 by 

2 impedance matrix in modified sequence-domain [20] is 

developed in [21][22]. However, in the modified sequence-

domain the frequencies of the coupling admittance cannot be 

represented. Moreover, unlike the impedance in the sequence 

domain, the MMC impedance in the modified sequence domain 
cannot be measured directly in time domain due to the existence 

of frequency shift between the modified sequence domain and 

sequence domain. In [23], a MMC 2 by 2 impedance matrix is 

derived to capture the characteristics of frequency coupling in 

sequence frame. However, the work focuses on the coupling 

between the AC system and DC system of the MMC and the 

dynamic of the PLL in AC side is not considered. 

Considering the limitations in the existing modelling 

approach and limited work on assessing system stability with 

multiple MMCs, the main contributions of this paper are: 

• Addressing the non-existence zero sequence current in 
three-phase three-wire systems, instead of adding a 

compensation voltage [17][19], the zero-sequence current is 

directly forced to zero thus providing a simplified modelling 

approach; 

• When mapping the dq-controllers, their transfer functions 

are directly transformed from dq to the PN0-frame which 

significantly simplifies the modelling process compared to 

[19]; 

• Simplification of the high-dimensional MMC admittance to 

a 2 by 2 matrix based on the characteristics of MMC 

harmonics in PN0-frame. The MMC impedance 

independent of the grid side impedance with simpler form 

can be more suitable for system stability assessment 

especially when multiple converters are considered; 

• Interaction of converters in close proximity is studied using 

the developed models and system stability assessment in 

case of multiple MMCs in a network are carried out 

considering the multi-infeed interaction factor (MIIF). 

The rest of the paper is organized as follows. Section Ⅱ 

presents the HSS modelling procedure of three-phase MMC. In 

Section Ⅲ, the small-signal admittance of MMC in PN0-frame 

is derived while Section Ⅳ verifies the proposed model and 

conducts the stability assessment. Section Ⅴ analyzes the 

stability of converters in close proximity and Section Ⅵ draws 

the conclusions. 

II.  HSS MODELLING OF THREE-PHASE MMC 

A.  Linearizing MMC model in abc-frame 

The equivalent circuit of the MMC average model [24][25] 

is depicted in Fig. 1, where a lumped capacitor Cm and a voltage 

source are used to mimic the dynamic of each arm. Take phase 

a as an example, Va and Zg represent the grid voltage and 

impedance seen at the MMC AC terminals, i.e., the impedance 

of converter transformer is incorporated into Zg. Δvpa is a small 

AC perturbation voltage.
cuav  and clav

 are the sum of the 

capacitor voltages of the SMs in the upper and lower arms, 

respectively. The upper and lower arm current are iua and ila, the 

arm voltage vua and vla, and modulation control signal nua and 

nla. vga and iga are the voltage and current on the AC side of the 

MMC, respectively. The DC voltage Vdc is assumed to be 

constant. Since the system is in a three-phase three-wire 

connection, the voltage of the DC mid-point is vn.  
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Fig. 1 Equivalent circuit of a three-phase MMC 

For ease of analysis, the three-phase quantities are defined in 

3 by 1 matrices as vgabc, igabc, cuabc


v , clabc


v , vuabc, iuabc, vlabc, ilabc, 

icabc, Vdc, and vn, whereas nuabc and nlabc are 3 by 3 diagonal 

matrices.  

For a three-phase MMC, the relationship between the arm 

voltage and the equivalent capacitor voltage of the SMs can be 

expressed as: 

 = , =uabc uabc cuabc labc labc clabc

  v n v v n v  (1) 

The internal dynamics between equivalent capacitor voltage 

of SMs and the arm current are depicted as: 
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 = , =cuabc clabc
m uabc uabc m labc labc

d d
C C

dt dt

 

 
v v

n i n i  (2) 

The arm voltages vuabc and vlabc, and the capacitor voltages 

cuabc


v  and clabc


v  all contains multiple harmonics [24]. It 

indicates that MMC has multi-frequency responses due to its 

significant steady-state harmonic components in the arm 

currents and capacitor voltages.  

The common-mode current that circulates inside the arms 

and the AC side current are denoted as: 

 ( )= + 2cabc uabc labci i i  (3) 

 
gabc uabc labc= −i i i  (4) 

The voltage on the AC terminal of MMC and the currents 

and voltages of the arms have the following relationship: 

 

+
2

2

uabc dc
gabc m m uabc uabc n
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gabc m m labc labc n

d
L R

dt

d
L R

dt


+ + = +


 − − − = − +


i V
v i v v

i V
v i v v

           (5) 

where vn=[vn, vn, vn]T and the DC mid-point voltage vn is 

obtained as [17] 

 
6
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Combining (1)-(4) with (5) and considering small 

perturbations, the MMC small-signal state-space model in abc-

frame can be expressed as: 
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   (7) 

where variables in capital form denote the values at the steady-

state operation point and variables with Δ denote the small 

perturbations. The matrix Δvn is equal to [Δvn, Δvn, Δvn]T and the 

component Δvn can be derived by linearizing (6) as: 

 

6
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  (8) 

B.  Transforming small-signal model from abc- to PN0-frame 

The PN0-frame has been chosen to study the system stability 

since in this frame different harmonics can be effectively 

tracked for a three-phase system [26]. The transformation 
matrix P is adopted to realize the transformation from abc- to 

PN0-frame [12] as: 
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Applying (9), (7) can be rewritten in PN0-frame as: 
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Due to the three-phase three-wire system, no zero-sequence 

current circulation path exists at MMC AC side. Note that in 

(7), Δvn is the zero-sequence compensation voltage inserted into 

the AC side to eliminate the zero-sequence grid current in abc-

frame, and contains complicated multiple harmonic terms as 

shown in (8). To simplify the modelling, the matrix Cz is 

introduced to force the zero-sequence grid current zero without 

the need for Δvn, as: 

 
1 0 0
0 1 0
0 0 0

z

 
=  
  

C  (11) 

The small-signal model of the three-phase MMC around an 

operation trajectory in PN0-frame, characterized by ΔicPN0, 

ΔigPN0, 0cuPN


v  and 

0clPN


v , can be derived in matrix form as 

 
0 0 0 0=

PN s PN PN pPN+ +x A x M n B v  (12) 

where 0 0 0 0 0

T
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  =  x i i v v  and the details of 

the matrices derived are: 
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In order to derive the system state equation, the relationship 

among the modulation ratio ΔnPN0, the state variable ΔxPN0, and 
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the input variable ΔvpPN0 need be identified in PN0-frame. 

When MMC controllers are considered, the variation of the 

modulation ratio ΔnPN0 depends on the control variables of the 

controllers. The control variables of the MMC generally include 

the AC current and voltage, as well as the internal circulating 
current. Thus, the small signal upper and low arm modulation 

ratios can be expressed as:  

 
0 0 0 0 0 0 0

0 0 0 0 0 0 0

=-

=

uPN iPN gPN vPN gPN ccPN cPN

lPN iPN gPN vPN gPN ccPN cPN

 −  − 


 +  − 

n G i G v G i

n G i G v G i
 (13) 

where GiPN0, GvPN0 and GccPN0 are the gain matrices of the AC 

current, AC voltage, and circulating current in the PN0-frame, 

respectively. 

Rewriting (13) in matrix form yields the relationship among 

the modulation ratio ΔnPN0, the state variable ΔxPN0, and the 

voltage ΔvpPN0 as: 

 
0 0 0=PN A PN B pPN + n G x G v  (14) 

where 0 0

0 0

- -

-

ccPN iPN

A

ccPN iPN

 
=  
 

G G 0 0
G

G G 0 0
 and 0

0

- vPN

B

vPN

 
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 

G
G

G
. 

Substituting (14) into (12) derives the small-signal state-

space equation of the three-phase MMC in PN0-frame as: 

 
0 0 0=( ) ( )

PN s PN pPN+ + +A Bx A MG x B MG v  (15) 

C.  MMC small-signal model based on HSS 

All the state variables in (15) are periodic signals in steady-

state, and the MMC is essentially a time-periodic system, i.e., 

the matrices As, B, M, GA and GB are periodic [16]. Based on 

the HSS modelling method [12], the MMC time-domain state-

space model (15) is transformed to the small-signal HSS model 
in frequency-domain to obtain a linear time-invariant (LTI) 

system expressed as: 

 
( )

0 0

0

=( [ ]+ [ ] )

[ ]+ [ ]

PN s A PN

B pPN

s    − 

+    

X A M HG Q X

B M HG V
 (16) 

where [ ]s A , [ ] B  and [ ] M  are Toeplitz matrices. HGA is 

the control transfer matrix associated with the harmonic state 

variables, HGB is the one with the harmonic input variables at 

different frequencies, and their specific expressions are decided 

by the controller. ΔXPN0 and ΔVpPN0 are the harmonic state 

variable matrices and the input matrix in harmonic frequency, 

respectively. The expressions of [ ]s A , [ ] B , [ ] M , HGA, 

HGB, Q, ΔXPN0 and ΔVpPN0 are given in the Appendix. 

To establish a complete small-signal MMC model, it is 

necessary to include various controllers. In (16), HGA and HGB 
are the transfer function matrices determined by the controller 

in PN0-frame. Therefore, to derive the small-signal impedance 

of MMC, the transfer functions of specific controllers should be 

established in the actual frame where they are implemented and 

then transformed to PN0-frame. This enables different MMC 

controllers, which are usually implemented in different frames, 

e.g., PR circulating current controller in abc-frame and PI AC 

current controller in dq-frame, to be accurate modelled in the 

PN0-frame. The detailed procedures to determine the transfer 

function matrices HGA and HGB in the small-signal model are 

described in the following subsections.  

D.  Circulating current suppression controller (CCSC) 

The circulating current predominantly contains a series of 

even harmonics, in which the second-order harmonic dominates 

[19]. The objective of CCSC is to suppress the circulating 

current as Fig. 2 shows a typical implementation in in which 3 

PR controller tuned at double fundamental frequency (2ω0) are 

used, one for each phase.  

s2+2ωcs +4ω0
2

+
_
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+

+

Krr s

++
0

2/Vdc
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Fig. 2 Diagram of circulating current suppression controller 

The transfer function of the PR controller is [27] 

 
2 2

0

( )
2 4

rr
PR rp

c

K
G s K

s s 
= +

+ +
 (17) 

where Krp and Krr are the proportional and resonant coefficients 

of the PR controller, respectively. ωc is the cutoff frequency. 

The high pass filter (HPF) filters out the DC component in 

the common mode current, and its transfer function is: 

 
2

2 2
( )

2
HPF

n n

s
G s

s s 
=

+ +
 (18) 

where ωn is the un-damped natural frequency and ζ is the 

damping factor [30]. 

Thus, the double frequency output modulation signal by the 

CCSC and the circulating current have the following 

relationship: 

 

2

2

2

( )

a ca

b ccabc cb

c cc

n i

n s i

n i

   
   

=
   
      

G  (19) 

where Gccabc(s) is the circulating current transfer function 

matrix in abc-frame, and is given as: 
( ) ( ) 0 0

2
( ) 0 ( ) ( ) 0

0 0 ( ) ( )

HPF PR

ccabc HPF PR

dc

HPF PR

G s G s

s G s G s
V

G s G s

 
−  

=  
  

G  (20) 

The corresponding CCSC transfer function in PN0-frame 

GccPN0(s), as part of HGA in (16), can be derived as: 

 -1

0 (s)= (s)ccPN ccabc G P G P  (21) 

E.  AC terminal current controller 

The AC terminal current control loop is typically 

implemented in dq-frame fixed to the voltage Vg at converter 

AC connection point and its block diagram is presented in Fig. 
3, together with the PLL. The output of the current control loop 

is the fundamental frequency modulation ratio n1abc. 

ω0Liq
c 

_

dq

abcPI

PI

2/Vdc

idref

iqref

id
c

+

iq
c

_
+

vd
c

vq
c

vcond
c

vconq
c

ω0Lid
c 

+

+
+

+

+
_

abc
dq

vq
c

PI


ω0

θ1

s

+
+

θ

vgabc

abc

dq

id
c

iq
c

θ

igabc

n1abc

2/Vdc

nd

nq

 
Fig. 3 The block diagram of an inner current loop 

When voltage perturbation occurs, the dynamics of the PLL 
can be described as [28]: 

 ( )= pll qG s v  (22) 
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where Gpll(s) is the transfer function of the PLL expressed as: 

 
2

( )
ppll ipll

pll

d ppll d ipll

K s K
G s

s V K s V K

+
=

+ +
  (23) 

where Kppll and Kipll are the proportional and integral 

coefficients of the PLL’s PI controller, respectively, and Vd is 

the steady state d-axis network voltage. 

In steady-state, the measured network voltages at the MMC 

connection point Vd
c and Vq

c in the control frame determined by 

the PLL equal to the corresponding Vd and Vq in the actual 

system frame, and can be written as [28]: 

 
cos(0) sin(0)

=
sin(0) cos(0)

c
dd

c
qq

VV

VV

    
    

−      

 (24) 

However, according to (22), voltage perturbation Δvq at the 

connection point leads to angle deviation Δθ extracted by the 

PLL, which affects the frame transformation. For small angle 

deviation Δθ, the trigonometry functions sin(Δθ) and cos(Δθ) are 

approximated to 0 and 1 in the frame transformation, 
respectively. Based on (22) and (24), the voltage perturbations 

Δvd and Δvq in system dq-frame passing through the PLL yield 

the voltage perturbations in the control frame as: 

 
1

0 1

c
q pll dd

c
d pll qq

V G vv

V G vv

     
=     

−      

 (25) 

In the same way, the resultant current perturbation in the 

control frame due to the PLL can be expressed as:  

 
0

0

c
q pll d dd

c
d pll q qq

I G v ii

I G v ii

       
= +       

−        

 (26) 

where Id and Iq are the d-axis and q-axis steady-state currents, 

respectively. 

The small signal voltage references in system dq-frame can 

be obtained as: 

 
0

0

c
cond conq pll dcond

c
conq cond pll qconq

v V G vv

v V G vv

−      
= +      

       

 (27) 

where Vcond and Vconq are the steady-state output d-axis and q-

axis voltages of the AC current control loop, respectively. 

To derive a simplified matrix form, we can define the 

following matrices: 

1

0 1

q pll

d pll

V G

V G

 
=  

− 
A ,

0

0

q pll

d pll

I G

I G

 
=  

− 
B  ,

0

0

iPI

iPI

G

G

 
=  
 

C  ,

0

0

0

0

m

m

L

L





− 
=  
 

D  , and 
0

0

conq pll

cond pll

V G

V G

− 
=  
 

E , 

where GiPI is the transfer function of the current PI controller. 

According to the structure of the current loop shown in Fig. 3, 

the perturbations of the modulation ratios are determined by the 
perturbations of the voltage and current in dq-frame as:  

 dq idq dq vdq dq= +n G i G v  (28) 

where 

 2( )idq dcV= −G D C  (29) 

 2( )vdq dcV=G DB + E + A - CB  (30) 

F.  Outer-loop controller  

The outer-loop controller is designed to set the current 

reference idref and iqref for the inner-loop AC current controller. 

Fig. 4 shows typical outer loop control designs with active and 

reactive power control (PQ control), and active power and AC 

voltage control (PV control).  

As shown in Fig. 4, for AC voltage control, the linearised 

terminal voltage magnitude of MMC is expressed as: 

 
2 2

c c

d d q q

d q

V v V v
v

V V

+
=

+
 (31) 

Pref

vd
c

+
idref

+−

vref

V

PI
iqref

GLPF

2/3

P V control
  

Pref

vd
c

+
idref

2/3

P Q control

Qref

vd
c

+
iqref

2/3

 
Fig. 4 Outer-loop: PV and PQ control 

For the active and reactive power control, the linearised d- 

and q-axis current references can be obtained as:  

 ( )22 3c

dref ref d di P v V= −  (32) 

 ( )22 3c

qref ref d di Q v V= −  (33) 

Thus, with PV control and considering (31) and (32), the 

linearized model of PV control can be described as: 
2

2 2 2 2

2 / 3 01 0

0 / /

c
ref ddref d

c
qref LPF vPI qd d q q d q

P Vi v

i G G vV V V V V V

 −     
 =     
 + +       

(34) 

where GLPF is the transfer function of the low pass filter in the 

AC voltage measurement and GvPI denotes the transfer function 

for the voltage-loop PI controller, as: 

 
1

,
1

vi
LPF vPI vp

K
G G K

sT s
= = +

+
 (35) 

where T is the time constant of the low pass filter [30], Kvp and 

Kvi are the proportional and integral coefficients of the AC 

voltage control loop. 

Define 

2

2 2 2 2

2 / 3 01 0

0 / /

ref d

LPF vPI d d q q d q

P V

G G V V V V V V

 − 
 =  
 + +   

X  and 

according to Fig. 3, the corresponding Gidq and Gvdq in (28) with 

the PV outer-loop controller can be derived as: 

 
2( )

2( )

idq dc

vdq dc

V

V

= −

= +

G D C

G DB + E + A - CB CXA
 (36) 

When the outer-loop adopts PQ control, combining (32) with 

(33) also yields the linearized transfer function of the controller 

in the same form as illustrated in (36) in which X is now given 

as
2

2

2 / 3 0

2 / 3 0

ref d

ref d

P V

Q V

 −
=  

−  

X . 

Gidq and Gvdq are in dq-frame, and can generally be expressed 

as (taking Gidq as an example) 

 
( ) ( )

( )
( ) ( )

idd idq

idq

iqd iqq

G s G s
s

G s G s

 
=  
 

G      (37) 

After transformation to the PN0-frame in a similar way as in 

(21), the controller transfer functions in PN0-frame become  

 0

( ) ( ) 0

( ) ( ) ( ) 0

0 0 0

iPP iPN

iPN iNP iNN

G s G s

s G s G s

 
 

=
 
  

G  (38) 

The elements in the matrices above can be obtained as [29]: 
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0 0 0 0

0 0 0 0

0 0 0 0

1
( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( ) ( )

2

1
( )

2

iPP idd iqq idq iqd

iPN idd iqq idq iqd

iNP idd iqq idq iqd

iNN idd

G s G s j G s j jG s j G s j

G s G s j G s j jG s j G s j

G s G s j G s j jG s j G s j

G s G

   

   

   

 = − + − − − + − 

 = + − + + + + + 

 = − − − − − − − 

= 0 0 0 0( ) ( ) ( ) ( )iqq idq iqds j G s j jG s j G s j   










  + + + + + − + 

 (39) 

According to (38) and (39), similar to 2-level VSC in [29], 

there exists coupling between positive and negative sequence 

frequencies caused by the dq-frame controller and other 

harmonic state variables in the PN0-frame. The matrix HGA in 
the Appendix need to be modified accordingly as:  

0

0 0

0 0

0 0

0

( 2 ) ( )

( ) ( )

= ( 2 ) ( ) ( 2 )

0 ( ) ( )

0 ( ) ( 2 )

A A

A A

A A A A

A A

A A

G 0 GNP 0 0

0 G 0 GNP 0

HG GPN 0 G 0 GNP

GPN 0 G 0

0 GPN 0 G

s j s

s j s j

s j s s j

s j s j

s s j



 

 

 



 
 

−
 
 − +
 

− + 
 − +
 

+ 
 
 

 (40) 

In (40), GNPA and GPNA are the frequency coupling 
matrices created by dq-frame controller as 

0 0

0 0

( ) , ( )
iPN iPN

iPN iPN

s s
− −   

= =   
   

A A

0 GNP 0 0 0 GPN 0 0
GNP GPN

0 GNP 0 0 0 GPN 0 0
 (41) 

where 
0

0 0 0

( ) ( ) 0 0

0 0 0

iPN iNPs G s

 
 

=  
  

GNP , 0

0 ( ) 0

( ) 0 0 0

0 0 0

iPN

iPN

G s

s

 
 

=  
  

GPN . 

The matrix HGB can also be derived using the same 

approach. 

 

III.  SMALL-SIGNAL ADMITTANCE OF MMC IN PN0-FRAME 

The solution of (16) can be expressed as 

( )1

0 0

hss 0

=( [ ] [ ] ) [ ]+ [ ]

=

PN s A B pPN

pPN

s −− −  +     



X I A M HG Q B M HG V

H V
(42) 

where the matrix Hhss reflects the relationship between the input 

variables ΔVpPN0 and state variables ΔXPN0. The small-signal 

admittance matrix of MMC YMMC links the AC terminal voltage 

and current perturbations as 

 gPN MMC pPN=i Y v  (43) 

In PN0-frame, ΔigPN is part of the state variable matrix ΔXPN0 

and ΔvpPN is part of the input matrix ΔVpPN0. Thus YMMC can be 

extracted directly from the matrix Hhss. Considering the 

harmonics in ΔigPN and ΔvpPN, YMMC will have a large dimension 
[18][19]. Therefore, further analysis of the MMC admittance 

matrix YMMC is required. 

As for the MMC, the even harmonics in the upper and the 

lower arms of any phase have the same magnitude and phase 

(called a common-mode (CM) harmonic), while the same 

magnitude but 180° phase difference (called a differential-

mode (DM) harmonic) for odd harmonics [31]. The CM 

components circulate in the internal MMC while the DM 

components ouput through the MMC AC terminals. 

If a positive-sequence perturbation Δvpabc at ωp appears at the 

MMC AC terminal, the upper and lower arm equivalent 
capacitor Cm will have the positive-sequence response voltage 

cuabc


v and clabc


v at ωp, respectively. Because the upper and 

lower arms are symmetrical, the perturbation voltage cuabc


v , 

clabc


v  belongs to the DM components, i.e., the same magnitude 

but 180° phase difference. Taking the positive-sequence 

capactior voltage perturbations cuabc


v , clabc


v  for the upper 

and lower arms as an example, they may be expressed as: 

 

cos( )

cos( 2 / 3)

cos( 2 / 3)

c p c

cuabc clabc c p c

c p c

m t

m t

m t

 

  

  

 

 +
 

= − = + − 
 + + 

v v  (44) 

where Δmc and Δθc are the magnitude and the phase angle of the 

perturbation voltage, respectively. 
The steady-state values of the modulation ratio for the upper 

and lower arms are Nuabc and Nlabc, mainly including the DC, 

fundamental and double-frequency (h=2) components. The 

impact of the different components on the MMC AC terminal 

current are now considered. 

• For the DC components of Nuabc and Nlabc, both 

0uabc cuabc


N v  and 0labc clabc


N v  are positive-sequence 

variables with the same frequency ωp but opposite sign, 

resulting in positive-sequence voltage at ωp generated at the 

MMC terminal. Consequently, positive-sequence current at 

ωp is generated at the MMC AC terminal. 

• For the fundamental frequency components of Nuabc and 

Nlabc, they are DM components and Nuabc1=-Nlabc1. Thus, 

1uabc cuabc


N v equals 1labc clabc


N v , and the two appear as 

MMC internal CM components. Thus, no current or voltage 

response at the MMC AC terminal will be observed. 

• For the double-frequency components of Nuabc2 and Nlabc2, 

they are the CM components and identical as: 

2 2

2 0 2

2 0 2

2 0 2

cos(2 )

cos(2 2 /3)

cos(2 2 /3)

uabc labc

N t

N t

N t

 

  

  

=

+ 
 

= + + 
 + − 

N N

(45) 

The product of the perturbation arm capacitor voltage 

cuabc


v  and Nuabc2 is: 

2 2

0 2 0 2

2
0 2 0 2

0 2 0 2

cos[( 2 ) ( )] cos[( 2 ) ( )]

cos[( 2 ) ( )] cos[( 2 ) ( ) 2 /3]
2

cos[( 2 ) ( )] cos[( 2 ) ( ) 2 /3]

uabc cuabc labc clabc

p c p c

c
p c p c

p c p c

t t
m N

t t

t t

       

        

        

 =−

 + + + + − + −
 

= + + + + − + − + 
 + + + + − + − − 

N v N v

 (46) 

According to (46), the interaction between the two yields 

zero-sequence voltages at ωp+2ω0 with opposite direction 
for the upper and lower arms. For a three-wire system, such 

zero-sequence voltage only exists in the internal MMC, and 

there is no zero-sequence current or voltage at ωp+2ω0 on 

the AC terminal. However, the generated negative-sequence 

voltages at ωp-2ω0 for the upper and lower arms are DM 

components, and hence, will appear at the AC terminal with 

the corresponding current.  

• Similarly to h=2, with h=4, there exists only ωp+4ω0 at the 

MMC terminal but can be neglected due to its very small 

magnitude. Whereas for h>4, the h-th harmonics in the 

MMC are all very small and the response at ωp±hω0 can be 
ignored.  

Therefore, based on the above observation, the specific form 

of the small-signal admittance YMMC at the MMC terminal can 

be simplified as a 2 by 2 matrix expressed  

0 00 0

( )

( 2 ) 22

)(

2

( )) (

( )( ) ( )

gP pPPP PN

gN pNNP NN

i s v

i s

s

j v

Y

s js

Y s s

j s jY Y  

    
=   

−  
 −− −   

 (47) 

where YPP(s), YPN(s), YNP(s-j2ω0), and YNN(s-j2ω0) are the four 

elements extracted from the matrix Hhss.  
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Thus, the form of the MMC admittance is effectively a 2 by 

2 matrices and hence the system stability analysis can be carried 

out by application of the Generalised Nyquist Criterion.  

It is noted that the MMC admittance as indicated in (42) and 

(43) is depended on the operating point and therefore, different 
operating points will result in different MMC admittances. 

IV.  MODEL VALIDATION AND STABILITY ASSESSMENT  

In order to validate the developed HSS model, the admittance 

plots from the HSS model are compared to those obtained from 

corresponding time-domain models using frequency sweep 

method. The time-domain models are implemented in 

Matlab/Simulink and the HSS model as described in this 

section, is implemented by using an m.file in Matlab. The main 
electrical parameters of the MMC system are listed in Table I. 

In the time-domain models, the small-signal impedance of the 

MMC is measured by means of injecting a series of small 

positive and negative-sequence perturbations Δvpa, Δvpb, and 

Δvpc as shown in Fig. 1, of which the peak phase voltage is 3kV 

at different frequencies. The AC current response Δiga, Δigb, and 

Δigc of the MMC system under each frequency is measured and 

the admittance under this frequency is calculated using (47). 

Table I Main electrical parameters of the MMC system 

Parameters Value 

Rated active and reactive power (P, Q) 1000 MW, ±300 MVar 

Nominal DC Voltage (Vdc) ±320 kV 

Rated MMC AC voltage (L-L) (Vnl) 360 kV 

Arm resistance and inductance (Rm Lm) 0.08 Ω, 0.042 H 

Lumped cell capacitance (Cm) 31.4 µF 

Nominal Frequency (f0) 50 Hz 

Transformer rated apparent power (St) 1265 MVA 

Transformer voltage ratio (kt) 400/360 kV 

Transformer leakage reactance Xt* 0.18 pu 

A.  Admittance analysis from time-domain model  

Initial tests in the time domain model with the MMC under 

open-loop control is carried out. The 3-phase modulation ratio 

for the arms are assigned directly, e.g., for phase ‘a’ upper arm, 

nua=0.5-0.46[cos(ω0t+0.07)]+0.01[cos(2ω0t+0.07)]. Voltage 

perturbations of 40Hz positive and negative sequence are 

injected at the MMC AC terminal, separately. FFT analysis is 

conducted on the phase ‘a’ current and voltage and selected 

spectra are shown in Fig. 5 in which the 50Hz fundamental 
frequency components have been omitted for clarity. 

 
(a) With 40Hz positive-sequence voltage injection 

 
(b) With 40Hz negative-sequence voltage injection  

Fig. 5 FFT results of AC terminal current and voltage (iga,vga) with voltage 

perturbation injection.  

Table II Phase angles of the 3-phase voltage and current with 40Hz positive 

and negative sequence voltage injections (degree） 

 Positive sequence 40Hz Negative sequence 40Hz 

40Hz 60Hz 240Hz 40Hz 140Hz 160Hz 

Δvga 85.3 -63.5 71.9 93.6 80.7 241.1 

Δvgb -34.7 176.5 191.9 213.6 -39.3 1.1 

Δvgc 205.3 56.5 -48.1 -26.4 200.7 121.1 

Δiga 150.4 105.9 214.9 64.5 236.9 34.4 

Δigb 30.4 -14.1 -25.1 184.5 116.9 154.4 

Δigc -89.6 225.9 94.9 -55.5 -3.1 -85.6 

 

Fig. 5 (a) shows that under 40Hz positive-sequence voltage 

perturbation, there are multiple frequency responses in the 

voltage and current at 40Hz, 60Hz and 240Hz. Table II shows 

the phase angles for the voltage and current responses. It can be 

observed that: 

• The voltage and current responses are positive-sequence at 
40Hz and 60Hz, and negative-sequence at 240Hz.  

• The resulted positive-sequence response at 60Hz can also be 

considered as negative-sequence at -60Hz, as -60Hz 

negative-sequence indicates 60Hz positive-sequence in 

time-domain [32].  

• Thus, it can be concluded that the injected positive-

sequence voltage perturbation at ωp leads to a positive-

sequence response at ωp and negative-sequence responses at 

ωp-2ω0 and ωp+4ω0, though the negative-sequence response 

at ωp+4ω0 is very small.  

For 40Hz negative-sequence voltage perturbation, Fig. 5 (b) 
shows the voltage and current responses at 40Hz, 140Hz and 

160Hz, in which the response at 160Hz is negligible. Table II 

shows the corresponding voltage and current the phase angles. 

It can be observed that: 

• The response is negative-sequence at 40Hz, positive-

sequence at 140Hz, and negative-sequence at 160Hz. 

• According to the analysis in Section IV, the negative-

sequence input at ωp causes the negative-sequence at ωp 

(40Hz) and positive-sequence response at ωp+2ω0 (140Hz) 

and ωp-4ω0 (-160Hz).  

• Positive-sequence -160Hz is deemed negative-sequence at 
160Hz in time-domain.  

The above simulation results verify the theoretical analysis 

in Section IV, and the small-signal model of MMC in PN0-

frame is properly captured by the four admittance elements in 

(47). 

B.  Admittance validation  

Fig. 6 compares the admittance elements YPP(s) and YPN(s) in 

matrix YMMC derived from the HSS model with different 

harmonic orders considered, and those obtained from the time-

domain model. The MMC exports 1000MW / 0MVar to the AC 

grid and the AC terminal voltage is 1 pu. Open-loop control is 
considered and the 3-phase modulations for the arms are the 

same as in Section Ⅳ A. The other two elements in YMMC, 

YNP(s-2jω0), and YNN(s-2jω0), have similar trends and due to 

space limit, are not presented here. Comparing the different 

admittance curves, it can be found that higher harmonic order 

considered in the analytical HSS model leads to more accurate 

model, and for h=4 the analytical admittances match well with 

those of the time-domain simulation models. It also implies that 

the internal harmonics of MMC has a significant impact on the 

AC side small-signal admittance, and need to be considered in 

the modelling. 
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When the complete control including CCSC, AC current loop, 

PLL and outer-loop are included, Fig. 7 compares the small-

signal MMC admittances obtained from the time-domain model 

and the HSS model (h=4). Due to space limitation, only the 

positive admittance YPP(s) is presented here. As can be seen that 
the results from the two models match well under both PV and 

PQ control, while the outer loop also has a significant impact 

on MMC impedance. In the case of PQ control, the magnitude 

of YPP at 50Hz-70Hz is smaller than that in PV control, which 

contributes to improved system stability [33]. Moreover, the 

phase of YPP with PQ control is closer to 0 than that with PV 

control and thus has larger damping with better stability. Under 

both controls, the phase of YPP among 90-270° at 50-70Hz 

implies the negative resistance effect and potentially leads to 

oscillation [34]. In this scenario, the PQ control is better than 

PV control. For frequencies above 70Hz, the admittances under 

the two controls are almost the same and the phase is between -
90° and 90°. 
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Fig. 6 Validation of the MMC admittance. (a)YPP(s), (b)YPN(s) 

 

 
Fig. 7 Positive admittance YPP(s) with different out-loop controllers 

 

Comparing YPP(s) in Fig. 6 (a) and Fig. 7, it can be seen that 

the resonant points are much reduced owing to the internal 

harmonic decline when the full controllers are added in the 

system. 

The analytical model also reveals that the impedance of the 

MMC is highly dependent on control structure and parameter 

setting, system operating point etc. The obtained MMC 
impedances during various system settings and conditions have 

also been validated but due to space limitation, they are not 

shown here. 

V.  STABILITY OF CONVERTERS IN CLOSE PROXIMITY 

A.  Equivalent network for multi-converter connection 

Considering increased network interconnections and 

connection of large offshore wind farms (e.g. in Europe) using 

HVDC links, many power networks in Europe will see 

significant numbers of HVDC converters connected in close 

proximity. For example, as outlined in [35] and schematically 

shown in Fig. 8, the GB network will have more than 20 HVDC 

connection by 2027, with a total transmission capacity of over 

16GW. When multiple converters are considered for studying 

converter interaction, shown in the red area in Fig. 8 as an 
example, the network admittance seen at each of the converter 

connection points will need to be considered together with the 

electrical coupling between the converters. In order to perform 

an analytical study on system stability and interaction, a 

simplified network structure is required. In this paper, the so-

called multi-infeed interaction factor (MIIF) between the 

converters [36], proposed by CIGRE WG B4 is used to quantify 

the simplified system structures. MIIF is a parameter for 

estimating the degree of voltage interaction between converters. 

Converter AC busses electrically far apart will have low MIIF, 

while MIIF is high when the AC busses are very close and the 
interaction is strong between the converters. The general 

formula for calculating MIIFe,n is expressed as [36] 

 ,e n e nMIIF V V=    (48) 

where ΔVe is the observed voltage change at bus e when a small 

voltage change ΔVn is induced at bus n. MIIF values range from 

zero to one with zero implying infinite electrical separation 

between e and n and one being on the same bus. 

 
Fig. 8 A future outlook of HVDC connection in the GB power grid [35] 
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Fig. 9 Equivalent circuit configuration for analytical studies 
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Considering the case with two MMCs, each of the MMC can 

be equivalent to connection with an AC source through a certain 

impedance to emulate the network condition at the MMC 

connection point, and the two AC sources are interconnected 

(within the same AC network). Thus, a simplified network 
configuration as shown in Fig. 9 can be developed. Zline1 and 

Zline2 in Fig. 9 are considered as the impedances for two 60km 

cables connecting the MMCs to the existing network. The 

interconnection between the two AC sources is represented by 

a value of Xc considering the high X/R ratio in transmission 

systems. Applying the MIIF concept, the followings are 

considered when setting the network parameters: 

• MMC1 infeed is considered as an existing HVDC link, and 

thus Zg1 is pre-determined. 

• When there exists strong electrical coupling between MMC1 

and MMC2, i.e. the two converters are in close proximity 
(high MIIF), Xc is set to a low value while Zg2 is set to a high 

value, so that MMC2 can be deemed close to AC system S1 

while being further away from S2. 

• When there only exists weak electrical coupling between 

MMC1 and MMC2 (low MIIF), Xc is set to a high value 

while Zg2 is set to a low value, so that MMC2 can be deemed 

close to AC system S2 and far away from S1. 

Accordingly, the specific network parameters for cases of 

weak and strong coupling are given in Table III. The equivalent 

impedances of the AC grids are Zg1=Rg1+jω0Lg1 and 

Zg2=Rg2+jω0Lg2, and Xc=jω0Lc is the reactance for 

interconnecting the two grids. By varying Zg1, Zg2, and Xc, 
different infeed conditions, i.e., electrical distances, can be 

emulated. Based on the parameters in Table III, the 

corresponding SCR for weak and strong couplings are 

presented in Table IV.  

Table III System parameter for weak coupling and strong coupling 

Parameters  Weak coupling Strong coupling 

Lt1 and Lt2 0.0587H 0.0587H 

Length of Cable1 & 2 60 km  60 km  

Rg1 / Lg1 4.08Ώ / 0.1296H 4.08Ώ / 0.1296H 

Rg2 / Lg2 4.08Ώ / 0.1296H 10.2 Ώ / 0.324H 

Lc 0.3H 0.01H 

Table IV SCR and MIIF in the case of weak coupling and strong coupling 

 Weak coupling Strong coupling 

SCR1 /SCR2 2.59 / 2.59 2.74 / 2.64 

MIIF1,2 / MIIF2,1 0.26 / 0.26 0.78 / 0.81 

Considering the voltages for sources S1 and S2 are the same, 

the network can be further simplified by combining the two 

sources into one with the three delta-connected impedance 

Zg1(s), Zg2(s), and Xc(s) transformed to equivalent Y connection 
as shown in Fig. 10. Note that Zg1, Zg2 and Xc are diagonal 2 by 

2 impedance matrix in PN0-frame for the 3-phase balanced 

system [12]. 

B.  Stability assessment of converters in close proximity 

As shown in Fig. 10, the equivalent AC external impedance 

Zeg1(s) at MMC1 can be derived as 

1 3 2 2 2 2

1 1 1

( ) [ ( ) ( ( ) ( ) ( ) ( )]

( ) ( ) ( )

Z Z Z Z X Z

Z Z X

eg e e line t MMC

e line t

s s s s s s

s s s

= + + +

+ + +
    (49)  

According to [33], in order to use Nyquist stability criteria, 

the system has to meet the following conditions: 

• MMC1 and MMC2 are stable when they are individually 

and directly connected to ideal voltage sources. 

• The grid voltage is stable without MMC1 and MMC2 

connection.  

The above conditions are met in a normal electrical network 
setup, and the matrices Zeg1(s) and YMMC1(s) do not have right-

half-plane (RHP) poles. Thus, the system stability can be 

assessed based on Nyquist curve for eigenvalue loci of the 

matrix Zeg1(s)YMMC1(s). Both MMC1 and MMC2 adopt the same 

control shown in Fig. 2 and Fig. 3, and also have the same outer-

loop PQ control with both active references being 1GW. The 

reactive power of the MMCs are set to maintain their terminal 
voltages at 400kV, and the control parameters are listed in 

Table V. 
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ZMMC2(s)
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Xt1(s)

YMMC1(s)

Ze2(s)

Ze1(s)

Ze3(s)
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Fig. 10 Small-signal impedance equivalent circuit 

Table V Controller parameters for MMC controller 

Parameters Value 

Current loop PI gains: Kip , Kii 15.8 Ω, 2980 Ω/s 

PLL PI gains: Kpllp , Kplli 0.0013rad/(sV), 0.12rad/(s2V) 

CCSC PR controller gains: Krp , Krr 63.3 Ω, 11200 Ω/s 

AC voltage controller PI gains: Krp , Kri 0.005 A/V, 0.5A/ (s·V) 
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Fig. 11 Nyquist plots for different MIIF using PQ control 

Under different MIIF, the Nyquist plots for eigenvalue loci 

of Zeg1(s)YMMC1(s) are compared in Fig. 11. For both MIIF 

cases, the eigenvalue locus do not encircle the point (−1, 0) and 
thus the system is stable. As described in [37], the phase and 

gain margins can also be observed based on the Nyquist plots. 

With low MIIF (MIIF2,1=0.26 in this example), the interaction 

of the two MMCs are weak and the Nyquist plots imply that the 

system has sufficient phase margin and magnitude margin and 

thus system stability is strong. In the case of high MIIF 

(MIIF2,1=0.81 in this example), the system stability is weakened 

with low gain margin and phase margin. Meanwhile, the 

crossover frequency of the Nyquist curve shown in Fig. 11(b) 

is 66Hz, indicating the system has the worst stability around 

66Hz, which is in the frequency range of MMC negative 
resistance appearing in Fig. 7. However, it needs to be noted 

that MMC negative resistance itself will not necessarily lead to 

unstable system as stability is the result of the interaction of 

multiple impedances including network. 
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The corresponding time-domain simulation results are given 

in Fig. 12. At 12s, a small perturbation is injected into the active 

power reference of MMC1. The d-axis current of MMC1 with 

low MIIF has smaller overshoot and can reach stable operation 

quicker than that under high MIIF as seen in Fig. 12 (a) and (b), 
indicating the system under low MIIF has higher stability 

margin than that under high MIIF. Note that the oscillation 

frequency in Fig. 12 (b) is around 16Hz in dq-frame, 

corresponding to 66 Hz in AC system. The simulation results 

thus accord well with the Nyquist analysis. 

  
(a) Low MIIF                                 (b) High MIIF 

Fig. 12 The d-axis current of MMC1 with different MIIF 

The effect of different outer-loop control on the stability of 

the interconnection system is further investigated. MMC1 now 

adopts PQ control and MMC2 PV control. Under different 

MIIF, the Nyquist plots are depicted in Fig. 13. As can be seen, 

with low MIIF, the system can maintain sufficient stability, 

whereas with high MIIF, the system becomes unstable. The 

corresponding time-domain simulation results shown in Fig. 14 

match well with that of Fig. 13, in which the system is unstable 

for high MIIF. Further studies considering different MIIF and 

outer-loop controllers reveal similar results. When multiple 

converters are considered, a system with low MIIF has better 
system stability than that with high MIIF, and outer-loop can 

also significantly impact on system stability. However, a clear 

boundary between high and low MIIF is difficult to define and 

full system studies are required to determine system stability. 

   
(a) Low MIIF                                       (b) High MIIF 

Fig. 13 Nyquist plots with PQ and PV control.  

 
(a) Low MIIF                                        (b) High MIIF 

Fig. 14 The d-axis current of MMC1 with different MIIF. 

Looking into the causes of the reduced stability margin in 

Fig. 11(b) and instability in Fig. 13(b), the negative resistance 

in the MMC admittance in the frequency range of 50-70Hz is 
of clear concern. This in combination with the high admittance 

magnitude under PV control leads to instability as shown in Fig. 

13(b) and Fig. 14(b). Therefore, parameter turning or additional 

voltage control to reduce the admittance magnitude within 50-

70Hz under PV control can likely improve system stability. 

Further studies and results will be report in the future. 

When assessing system stability, converters including wind 

farms, HVDC, FACTS etc. connected in close proximity to the 

point of common coupling must be fully considered. In 
addition, converter admittance is affected by its operating point 

as previously described. Thus, the assessment of multiple 

converter interaction is a complex issue which is affected by 

multiple factors including the states and operation of the 

network and converters etc.  

VI.  CONCLUSION  

This paper has described the impedance modelling and 

validation of the three-phase MMC converter based on HSS. 
The detailed mathematical expressions for HSS modelling for 

MMC have been derived considering the integration of various 

inner and outer control loops. The coupling between the 

positive and negative sequence components brought by external 

control loops and PLL are analyzed in the model. The small-

signal impedances obtained from the developed analytical 

model have been validated using time-domain models. With the 

impedance model, the interaction of multiple converters in 

close proximity is studied considering different multi-infeed 

interaction factor (MIIF). Stability analysis and time domain 

simulation results show good match and that system with high 
MIIF where strong couplings between the two MMCs exist may 

cause the instability of the system.  

Converter and system impedances are highly dependent on 

operating point, controller setting, and network structure, and 

thus further studies to investigate the impact of their variations 

on system stability are required. In addition, to identify states 

where the risk of instability may exist in a multi-infeed 

converter system is critical, so as to help inform operating away 

from those network or converter operating states.  

APPENDIX A 

The matrices in (14) are given as 
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