Demonstration of DC Grid Protection: PROMOTioN WP9 Updates

13th May 2020
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Agenda

- Introduction
- Test objects
 - MELCO IED
 - KTH IED
- Testing and Results
 - Test Setup and Modelling
 - KPIs
 - Partially and fully selective results
 - Multivendor results
- Summary

Ian Cowan (The National HVDC Centre) Geraint Chaffey (KU Leuven) Ilka Jahn (KTH)
Frederick Page (Mitsubishi Electric Company) Habib Rahman (The National HVDC Centre)
Introduction
Ian Cowan (The National HVDC Centre)
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

PROMOTioN Overview

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714.
Fault Currents within a DC Grid

Fault current characteristics
- No zero crossings
- High rate-of-rise
- High steady state value

Sensitive (& expensive) converters and fast controls

Options for Protection

Converter AC breakers
- As used in existing projects
- Slow (40-60 ms opening time)
- Not selective

Fault-current blocking converters
- Higher losses compared to half-bridge
- Fast (responsive within a few ms)
- Not selective

DC circuit breakers
- Operating time of 2-10 ms
- Trade-off in losses vs speed
- Allows selective fault clearing

Selective: DCCBs on every line end

Partially selective: Split DC grid in sub-grids (protection zones)

Non-selective: Temporary shut down the whole DC grid
HVDC IED

- Intelligent Electronic Devices (IEDs) for HVDC protection:
 - Execute algorithms
 - Fault detection and discrimination
 - Breaker failure backup protection
 - High speed requirement (e.g. <1ms)
 - Desire for robustness, security, dependability…

- State of the art HVDC IEDs
 - Advanced algorithms not yet implemented in real systems
 - Requirement for increasing confidence/TRL
 - Standalone IED likely to be required for large scale HVDC networks

- No product on the market today, but significant industrial development
Demonstration of DC Grid Protection • PROMOTioN WP9 Updates

Work Package 9 Basis

The objective is to demonstrate the operation of the DC grid protection systems.

• integrate DC relays from WP 4 and DCCB models from WP6 in real-time environment
• use hardware in the loop real-time testing in RTDS
• develop DC grid benchmark models and test procedures
• primary and back-up DC Grid protection
• equipment interoperability
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Work Package 9

HIL demonstration of fault clearing strategies (real system)

AC breaker non-selective
Sym monopole configuration

Partially selective
Sym monopole configuration

Full-selective
Sym monopole configuration

HIL demonstration of Non-selective fault clearing strategies

Converter-breaker strategy
Bipole configuration

Converter-breaker strategy
Sym monopole configuration

FB converter strategy
Bipole configuration
Mitsubishi Electric IED
Dr. Frederick Page (Mitsubishi Electric Europe)
Activity Within PROMOTioN

Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

WP1 – Requirements for meshed offshore grids - TenneT

WP2 - Grid topology & Converters - RWTH Aachen

WP3 - WTG – Converter interaction - DTU

WP4 - HVDC Grid Protection Sytems - KU Leuven

WP5 - Test environment for HVDC CB - DNV GL

WP6 - HVDC CB performance characterisation - UniAberdeen

WP7 - Regulation & Financing - TenneT

WP8 - HVDC GIS Demonstrator - ABB

WP9 - Protection system demonstration - SHE Transmission - RWTH Aachen

WP10 - HVDC Circuit Breaker demonstration - DNV GL

WP11 - Harmonisation towards standardisation - DTU

WP12 - Deployment plan for future European offshore grid - TenneT

WP13 - Dissemination - SDW

WP14 - Project Management - DNV GL
Hardware Activity Within PROMOTioN

High-speed DC IED (relay)

Mechanical DCCB test set-up in KEMA high-power labs

Demonstration of DC Grid Protection – PROMOTioN WP9 Updates

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714.
IED Testing Progress – Work Package 4

- Unit testing within WP4 in collaboration with KU Leuven’s Energy Ville laboratory
- Algorithm development by KU Leuven; implemented by Mitsubishi Electric

Installation in Energy Ville, Genk
Key Features

- Redundant architecture: duplicate systems
- Industrial-grade equipment - builds on HVDC/FACTS technology
- Speed: Multiple, high-speed DCCB trip-outputs
- Flexibility:
 - Software programmable to utilise a variety of algorithms
 - Can be used in a variety of system configurations

Example system configurations
Demonstration of DC Grid Protection – PROMOTioN WP9 Updates

Key Features

- Platform to perform research
- Low-cost
- Plug & play
- Open-source hardware and software
- Save time and cost for building laboratory setup
- Easy adaptation to different purposes
IED Hardware

- Standard and established hardware: Zedboard
- Custom and flexible I/O cards
Example Substation
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Functionality

- DC line and busbar protection for meshed HVDC grids
- Algorithms: dv/dt, travelling wave, overcurrent, undervoltage, busbar
Results

- Fastest trip time: ca. 90 μs [4]
- Algorithm accuracy: <5% [5]
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

IED Connection

1) run PC simulation of fault scenario
2) export voltage and current waveforms
3) program waveform generator to play these

1) program and control real-time simulation
2) read-out results
Test Setup and Modelling
Habib Rahman (The National HVDC Centre)
Test Setup and Modelling

- Protection Design
- System Modelling
 - Converter Modelling
 - Converter Control
 - DC Circuit Breaker (DCCB)
 - Others
- DC Grid Configuration
 - AC and DC Network Model
 - HVDC Cable Model
 - IED Configuration
- DC Grid: Overview in run-time window
- Key Challenges
Protection System Design

Methodology

- **Choice of protection philosophy**
- **Definition of minimum behaviour at each converter**
- **Choice of protection system implementation**
- **Location of circuit breakers**
- **Selection of inductor rating**
- **Examination of backup protection strategy**
- **Calculation of protection IED thresholds**

Example 1: Partially Selective with Mechanical DCCB

- Partially selective
- DC-FRTS3 (all converters)
- Mechanical circuit breaker
- 1 circuit breaker per pole at the switching station end of cable 3
- 105 mH per pole at each circuit breaker location
- AC-side CBs -> no requirement for additional inductance
- IED thresholds calculated

Example 2: Fully Selective with Hybrid DCCB

- Partially selective
- DC-FRTS3 (all converters)
- Hybrid circuit breaker
- 1 circuit breaker per pole at the switching station end of cable 3
- 25 mH per pole at each circuit breaker location
- AC-side CBs -> no requirement for additional inductance
- IED thresholds calculated
System Model: Converter

Open-source converter model: developed through a research project in collaboration with the University of Strathclyde, UK.

- Converter Modelling
 - Open source Converter Model
 - Converter topology-HB MMC
 - Average HB-MMC

- Converter Control Design
 - High level Control
 - Low level control

- Real-time Implementation
 - Small-time step
 - Large-time step
 - Interface

A basic circuit diagram of an MMC

A single phase representation of an Average HB-MMC

MMC implementation in RTDS Platform

Simulation time step: 2.5µs

System level control

Converter level control

Voltage balancing and calculation

Control system

Simulation time step: 50µs

Open source converter model developed through a research project in collaboration with the University of Strathclyde, UK.
Demonstration of DC Grid Protection – PROMOTioN WP9 Updates

System Model: DC Circuit Breaker

Developed by PROMOTioN WP6 in collaboration with industrial partners. To be used for WP9 demonstration:

- Partially-selective DC protections strategies
- Fully-selective DC protections strategies

- ABB Hybrid DCCB
 - A rated current of 16 kA
 - 2ms operation time

- Mitsubishi Electric Mechanical DCCB
 - A rated current of 16 kA
 - 8ms operation time

- VSC Assisted Resonant Current (VARC) DCCB
 - A rated current of 16 kA
 - ~3ms operation time

All developed DCCB models are validated against PSCAD model.

Source: PROMOTioN WP6: D6.9 & D6.2

Source: PROMOTioN WP6: D6.8

Source: PROMOTioN WP6: D6.9
Demonstration of DC Grid Protection • PROMOTioN WP9 Updates

System Model: Others

- **HVDC Cable**
 - Cable parameters are representative of the CMS HVDC project
 - Travelling wave frequency-dependent phase model is used
 - Avoid the use of long interface Bergeron lines
 - Modelled in small-time step
 - More accurate representation of electrical network resulting in more representative results from IED tests

- **Simulated IED**
 - Avoid complexity when testing a large network
 - Used when physical IED number is limited

- **Other Components**
 - Converter Transformer
 - AC breaker
 - High Speed DC Switch (HSS)
 - Surge Arrestor (Type 3 Arrestor-similar arrester model in PSCAD)
Demonstration of DC Grid Protection - PROMOTiON WP9 Updates

Real time Simulation Test Setup: DC Grid Configuration

- Converter and DC-side electrical elements are modelled in the small-time step (~4μs)
- AC-side circuits and converter control are modelled in the main time step (50μs)
- AC networks are modelled as a source and equivalent impedance
- Cables are modelled in the small-time step on GTFPGA units
- No communication is used for time-sensitive operations (e.g. DC protection)
- Hardware requirement for three-terminal network implementation:
 - ✓ 2x NovaCor chassis
 - ✓ 3x GTAO card
 - ✓ 5x GTFPGA Units
 - ✓ 1x GTDI card
 - ✓ 1x Global Bus Hub
 - ✓ 1x GTDO card
 - ✓ 1x IRC Switch

![Diagram of DC Grid Configuration](image-url)
Real time Simulation Test Setup: RSCAD Simulation run-time window

• Converter BLK-DBLK
• Automated repetitive scripts
• Fault Control
 ✓ Cable selection
 ✓ Fault location selection
 ✓ Fault type selection
• Transition between SW and HW IED
• PROMOTioN IED activation
Demonstration of DC Grid Protection • PROMOTioN WP9 Updates

Real time Simulation Test Setup: Lessons Learnt

- Cable modelling-additional hardware requirement
- Avoiding interfaces between large time-step and small time-step
- Small time-step interface between different:
 - ✓ bridge boxes
 - ✓ GTFPGA Unit
 - ✓ MOV model
- Impedance of the interface t-line \(Z_o = \sqrt{L/C} \) has to be compensate with other network elements:
 - ✓ DCCB
 - ✓ HVDC Cable
- Simulated IED Configuration-requires hardware to interface (through GTAO and GTAI cards) between sub-step to small time-step
- Developed model structure varies depending on particular test cases:
 - ✓ multivendor
 - ✓ different DCCB topologies
 - ✓ different IED configurations
Key Performance Indicators
Geraint Chaffey (KU Leuven)
Key Performance Indicators for HVDC Protection Systems

- Protection IED indicators
 - Dependability
 - Operation time

Ability of the protection IED to **successfully detect** a fault in the protection zone
- Determined through dynamic validation testing i.e. repetitive fault testing in time domain simulation

Time from arrival of travelling wave front to instant IED sends a trip signal
Key Performance Indicators for HVDC Protection Systems

- Protection IED indicators
 - Dependability
 - Operation time

- System indicators*
 - Efficiency indicators: Fault interruption time, Active power restoration time, Reactive power restoration time, DC voltage restoration time, Transient energy imbalance.
 - Failure indicators (probability based)

*System KPIs developed by PROMOTioN WP4 partners. Fact sheet to be published in D11.2 (Q2 2020).
Key Performance Indicators for HVDC Protection Systems

• Protection IED indicators
 • Dependability
 • Operation time

• System indicators*
 • Efficiency indicators: Fault interruption time, Active power restoration time, Reactive power restoration time, DC voltage restoration time, Transient energy imbalance.
 • Failure indicators (probability based)

• DCCB KPIs

• Protection margin

*System KPIs developed by PROMOTiON WP4 partners. Fact sheet to be published in D11.2 (Q2 2020).
Evaluating Protection IED Performance: Partially Selective
Geraint Chaffey (KU Leuven)
Protection IED performance: Partially Selective Protection System

- Single vendor test cases (only PROMOTioN IED or only Mitsubishi IED)
- Partially selective case study – one IED and DCCB per pole
- Repetitive testing to evaluate functional performance and dependability:
 - Pole-to-pole faults every 5 km (on cable34)
 - Three repetitions at each fault location

Example Time Domain Result

- Voltage
- Current

Measurements at IED location
Hybrid DCCB
Mid-cable pole-to-pole fault
(MELCO under test)
Protection IED performance: Partially Selective Protection System

- Single vendor test cases on partially selective protection system:

Example Time Domain Result

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements at IED location Hybrid DCCB Mid-cable pole-to-pole fault (MELCO under test)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example results from partially selective system [6].
Evaluating Protection IED Performance: Fully Selective and Multivendor
Geraint Chaffey (KU Leuven)
Multivendor HVDC Protection

• What do we mean by multivendor interoperability?
Multivendor HVDC Protection IEDs – Test Setup

- Interoperability of IEDs from multiple vendors is one essential aspect for achieving successful fault clearing in a future multi-vendor system.

- Fully selective strategy
 - IEDs are placed at both ends of a cable
 - DCCBs are placed at the DC switching station: inductors are chosen to allow breaking current to fall within the capability of hybrid DCCBs (2 ms/16 kA)
 - ACCBs at the converter side
Multivendor HVDC Protection IEDs – Primary Protection

- **IED configuration:**
 - Single-vendor setup:
 - C2: MELCO IED functional units connected to IED42 and IED24
 - Multi-vendor setup:
 - C4: KTH IED: IED42, MELCO IED: IED24

- **Example results (Mitsubishi IED):**
 - Mean operating time: less than 600 μs
 - Single-vendor and multi-vendor cases:
 - Comparable operating time
 - 100% dependable along the 136 km cable
Multivendor HVDC Protection IEDs – IED Failure Backup (Dual Redundant)

- IED configuration (multi-vendor setup (C5)):
 - KTH IED as IED42a, MELCO IED as IED42b with separate measurement inputs, and independent trip outputs
 - One of the hardware IEDs is disabled to simulate a failure

- IED performance:
 - Operating time: few hundreds μs
 - 100% dependable
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Multivendor HVDC Protection IEDs – Breaker Failure Backup

- IED configuration:
 - Single-vendor setup (C3):
 - MELCO IED functional units are connected to IED$_{42}$, IED$_{41}$ and IED$_{43}$.
 - Multi-vendor setup (C6):
 - MELCO IED: IED$_{42}$
 - KTH IED: IED$_{41}$ and IED$_{43}$
 - MELCO and KTH IED: directly connected with a wire
Multivendor HVDC Protection IEDs – Breaker Failure Backup

- IED performance:
 - BF delay setting: 10.42 ms
 - Single-vendor and multi-vendor cases:
 - BF backup IED time: comparable
 - BF decision time: few hundreds μs
 - 100% dependable

![Diagram showing BF backup IED time, primary IED time, BF delay time, and BF decision time](image-url)
Use of CMS Control and Protection Replicas
Ian Cowan (The National HVDC Centre)
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Replica Setup

Real-Time Simulator

Measured Voltage and Current

Analogue signals

Firing Pulses (Digital Signal)

Replica HVDC Control

Captured Setup

Real-time Simulator Runtime Interface
• Apply network faults
• Change generation dispatch
• etc

Real Time Simulator Rack

Modelled in RTS Software

HVDC Control Replica Cubicle

Sign Processing at Interface Cubicles

VSC Station Computer

Valve Control Unit

Firing Pulses

Operator Work Station
• Start up / shut down
• Change control mode
• Change set points
• etc

© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714.
Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Different Setup, Same Result?

- Replica model used as basis
- Not immediately suitable

Diagram:

- Onshore HVDC Converter Station 1
- Onshore HVDC Converter Station 2
- Offshore HVDC Converter Station 3
- DC Switching Station 4
- Wind Farm
- AC Network 1
- AC Network 2
- Cable 1 (269km)
- Cable 2 (136km)
- Cable 3 (31km)
- 840 MVA
- 275 kV/380 kV
- 16%
- 1 GW
- 800 MW
- 626 MVA
- 380 kV/132 kV
- 16%
- 800 MW
- 600 MW
- 1200 MW
- 1265 MVA
- 380 kV/400 kV
- 16%
- 1200 MW
- IED 3
- ACCB 2
- ACCB 1
- SCR = med/low
- SCR = high

Updates:

- Moved to small time step
- Frequency dependent line used
- Another type of interoperability
- Subject to ‘normal’ system events
- Same IED performance observed
Summary

Ian Cowan (The National HVDC Centre)
• Two hardware IEDs are tested in a realistic three-terminal network for primary, IED failure backup and breaker failure backup protection. The test results demonstrate:
 • Single-vendor and multi-vendor cases: comparable performance
 • Multi-vendor HVDC grid protection system: feasible and a viable option
• Initial steps to test with CMS control and protection replicas undertaken

Demonstration of DC Grid Protection - PROMOTioN WP9 Updates

Summary

PROGRESS

NEXT STEPS

• Further testing with different combinations of DCCB models and IED locations
• Extend model to 4T system
• Add in pole rebalancing to allow move to system level testing
• Further testing including the CMS control and protection replicas
• Prepare for the final demonstration
How to Protect an HVDC Grid?

• Answer is likely to be highly case specific:
 • AC system constraints
 • Choices by system operator
 • Location of system (onshore/offshore)

• But, there are numerous options
 • Each technically feasible but with different trade-offs (cost, system impact,…)

• Key components to realise DC Grid protection are ready
 • IEDs as discussed within this presentation
 • DCCBs as demonstrated at KEMA labs through PROMOTioN
 • Devices from multiple vendors tested

• Further results coming soon

Subscribe to the PROMOTioN newsletter to stay up to date!
Thank you!
Further Reading