

GE's **eLumina**™ HVDC Control System

Leandro VacircaProduct Manager for HVDC Control Systems

Utilizing nearly 60 years of HVDC expertise along with a powerful Model-Based Design methodology, GE has combined cutting-edge computing technology with standardized application software to deliver a reliable, high-performance system

GE Makes Major Investment in HVDC

New HVDC COE Building

- World class office space for over 500 employees
- High capacity VSC and LCC valve manufacturing facility

New HVDC Simulation Lab

- Contract system validation
- Multi-project test capacity, >45 RTDS™ racks
- Multiple fully equipped customer FAT test suites

New Valve Test Facility

- Completely programmable voltage and current test waveforms
- 6000A test capability for VSC and LCC valves
- Accelerates production and development type tests

GE investing in HVDC technology to WIN!!

GE Introduces **eLumina**™ Control System

HVDC Control System for the New Grid

eLumina™ Platform

Controls Platform Digital Substation

eLumina™ Suite

HVDC Software Single Source of Truth Model Brilliant SW Factory

eLumina™ Explorer

Real-time monitoring Data visualization Events logging

eLumina™ Analytics (Digital Ready)

Insights via analytic engines
Advanced visualization

Customer Outcomes

Rapid Project Delivery

Maximized Performance

Robust & Resilient **Design**

Compact Footprint

Analytics

+150

Configurable SW modules

30% faster cycle

+10x

computing platform power

80%

fewer wires

100%

automatic testing

50% smaller footprint

40%

fewer cabinets

Built with
operational
analytics,
Cyber-secured

Designed to address today's and tomorrow's grid challenges

GE Introduces **eLumina**™ Control System

HVDC Control System for the New Grid

Maximized System Availability & Reliability

Improved system resiliency through simplified, fully-redundant system architecture that maximizes system availability

- IEC61850 compliant for ultimate interoperability
- Dual-redundant converter control with seamless changeover
- · Triple-redundant converter protection
- · Modular, Secure, Simple
- Maximized availability and increased reliability
- Cyber-secure compliant with utility practice and regulations (ex. NERC/CIP)

High Performance

First HVDC solution to implement a world-class digital measurement system fully based on **IEC61850**

- Full digital integration of all voltage and current sensors via new fast merging units (MU640)
- High-speed process bus technology compliant with IEC61850 and IEC61869 standards
- Robust, ultra-fast and low-latency sensor data gathered over redundant Ethernet and fiber optic communication networks
- Fastest core computing unit (CCU) in the industry, enabling a more flexible and adaptive HVDC solution

Compact Footprint

Using a modular approach to our controls platform combined with cutting-edge computing technology, GE's latest generation of control system reduces the form factor and footbrint.

~40% Reduction in total cabinets count ~30% Reduction in weight

- Reduced complexity
- Lower power usage
- · Significant reduction in audible noise

ELECTRICALLY AND MECHANICALLY SIMPLIFIED

Proven Software and Optimized Delivery

eLumina™ Suite provides a **proven HVDC application software** and **industry-best tool chain** to enable ~30% reduction in delivery cycle

- eLumina™ HVDC Software
 90% standard and configurable HVDC applications built from 150+ proven software components
- Single Source of Truth process
 Allows to validate system performance across
 multiple simulation tools from the very same source
- eLumina[™] Brilliant Software Factory
 Automatic regression test engine ensures improved quality of as-delivered software

Introducing **eLumina**™ Explorer

- · Modern HTML5 web interface
- · Real-time visualization
- Configuration and commissioning
- · Analyze transient fault records
- · Signal historian

Examples:

- · Real-time status
- · Live debugging capability

eLumina™ Analytics

An analytics platform enabled by the HVDC control system

- Data connectivity
- · Advanced computing power
- · Analytic engines that generate insights
- · Intuitive visualization

Outcomes

- Reduced maintenance
- · Reliability and Availability improved
- Predict & diagnose assets to avoid unplanned outages
- · Asset life-cycle optimization

eLumina™ - Product Qualification

Type Tests Plan

EN 61000-4-2 - Electrostatic Discharge Immunity
EN 61000-4-3 - Radiated RF Immunity
EN 61000-4-4 – Electrical Fast Transients Immunity
EN 61000-4-5 - Voltage Surge Immunity
EN 61000-4-6 - Conducted RF Immunity
EN 61000-4-8 - Power Frequency Magnetic Field Immunity
EN 61000-4-11 and EN61000-4-29 - Voltage Dips and Short Interruptions Immunity
EN 61000-4-16 - Power frequency
EN 61000-4-17 - A.C. component in d.c. (ripple)
EN 61000-4-18 - Slow damped oscillatory wave
EN 60255-26:2013 clause 7.2.13 - Gradual shutdown/start-up
EN 55011 - Radiated Emissions (30 - 1000 MHz)
EN 55032 - Radiated Emissions (1 - 6 GHz)
EN 55011 - Conducted Emissions
EN 60068-2-1:2007 - Test Ad: Cold: -20C/-10 C 16 hours (*)
EN 60068-2-2:2007 - Test Bd: Dry Heat :- +55 Deg C, 16 hours
EN 60068-2-78:2013 - Test Cab: Damp Heat, Steady State:- 10 days at 40deg C and 96 %
humidity
EN 60068-2-30:2005 - Test Db: Damp Heat variant 2: 90 to 96 RH @ 40 deg C ramped to
/from 95-100 RH @25 deg C 24 H + 6 * 24 hour cycles
BS EN 60255-21-1:1996 (IEC 255-21-1:1998) - Vibration (Class 1)
BS EN 60255-21-2:1996 (IEC 255-21-2:1998) - Shock and Bump (Class 1)
EN60068-3-3 AG5, EN60068-3-3 Perf level III, EN60255-21-3 Class 1, IEE693-2005 Perf level
high – Seismic
Ingress Protection: IP42

Type Tests Status

Type Tests	Result
EMC	
Conducted Emissions & Immunity	Passed
Radiated Emissions & Immunity	Passed
Electrostatic Discharge	Passed
Surge Immunity	Passed
Transient Immunity	Passed
Environmental	
Cold	Passed
Dry Heat	Passed
Damp Heat Steady State & Cyclic	Passed
Vibration/Shock/Bump	Passed
Seismic	Passed
IP IP	Passed

eLumina™ - Type Tests (Lab Photographs)

Environmental

Seismic

Magnetic

HVDC Application Software Demonstrated

Maximized System Availability & Reliability

Improved system resiliency through simplified, fully-redundant system architecture that maximizes system availability

- IEC61850 compliant for ultimate interoperability
- Dual-redundant converter control with seamless changeover
- Triple-redundant converter protection
- Modular, Secure, Simple
- Maximized availability and increased reliability
- Cyber-secure compliant with utility practice and regulations (ex. NERC/CIP)

Pole and BipoleControl Architecture

Duplicated Control and triplicated Protection systems for each pole end

- Complete electrical and mechanical segregation between Control and Protection
- Any one cabinet can be switched off/on during power transmission
- All plant I/O is connected via IEC61850 compliant, high speed, fiber optic communication links
- Bipole functionally hosted by control core computing units (CCUs)
- Copper wiring is virtually eliminated -80%
- Footprint reduced by -50%

Core Computing Unit - **CCU** for Control and Protection

Provides the high performance, real time computing platform needed to execute HVDC control and protection applications to meet today's and tomorrow's demands

- Designed as Line Replaceable Units (LRU) for simplified maintenance and spares management
- Complies with OpenVPX Standard (ANSI/VITA 65-2017) used in long life and high availability applications such as Avionics
- Type-tested for harsh EMC, environmental and mechanical environments mandated by IEC61850-3
- Optimized for executing industry-leading Simulink® Model-Based HVDC applications
- Fast and simplified installation with as few as 3 fibers connections
- Duplicated power supply for high reliability

Compact Footprint

Using a modular approach to our controls platform combined with cutting-edge computing technology, GE's latest generation of control system reduces the form factor and footprint.

~40% Reduction in total cabinets count ~30% Reduction in weight

- Reduced complexity
- Lower power usage
- Significant reduction in audible noise

ELECTRICALLY AND
MECHANICALLY SIMPLIFIED

High Performance

First HVDC solution to implement a world-class digital measurement system fully based on **IEC61850**

- Full digital integration of all voltage and current sensors via new fast merging units (MU640)
- High-speed process bus technology compliant with IEC61850 and IEC61869 standards
- Robust, ultra-fast and low-latency sensor data gathered over redundant Ethernet and fiber optic communication networks
- Fastest core computing unit (CCU) in the industry, enabling a more flexible and adaptive HVDC solution
- 1 Network Interface cabinet w/ Fiber Optics
- 2 Remote Interface Cabinet w/ MU640 Merging Unit
- 3 Primary Equipment

Fastest Core Computing and Merging Units for HVDC applications

Network Interface Cabinet - **NIC**

The digital hub coordinating all communications between the HVDC system elements. Interconnects control and protection racks and digital substation via duplicated optical networks

- Two NICs are required for a Pole or a Bipole
- Proven and ruggedized gigabit optical ethernet network switches (GE S20 family)
- All network paths are duplicated via PRP or from source
- IEEE1158 v2 PTP is used to provide an accurate (1us) time system
- Type-tested for compliance with HVDC substation level requirements dictated by IEC61850-3
- Low power, thermally efficient and reliable design
- High reliability, full optical interconnections, no media converters
- 1 GE Reason RT430 Precision Time Clock
- **2** GE Reason S20 Industrial Ethernet Switches
- 3 IEC61850-compliant industrial servers
- 4 Optical Communication Patch Panel

Introducing **eLumina**TM Explorer

- Modern HTML5 web interface
- Real-time visualization
- Configuration and commissioning
- Analyze transient fault records
- Signal historian

Examples:

- Real-time status
- Live debugging capability

Introducing **eLumina**TM Explorer

- Modern HTML5 web interface
- Real-time visualization
- Configuration and commissioning
- Analyze transient fault records
- Signal historian

Examples:

- Real-time status
- Live debugging capability

