HVDC Innovation in Context Dr Norman MacLeod, Director of Interconnectors ### **HVDC Schemes in UK** # HVDC schemes in commercial operation | Scheme | Owner | Country | Power
(MW) | DC voltage
(kV) | In service date | |------------------------------|------------------|-----------------------------------|---------------|--------------------|----------------------| | IFA 1 ¹ | NG/RTE | France | 2 x 1000 | ±270 | 1985/86 ² | | Moyle ¹ | Mutual
Energy | Northern
Ireland –
Scotland | 2 x 250 | ±250 | 2002 | | BritNed ¹ | NG/TenneT | Netherlands | 1000 | ±450 | 2011 | | EWIC | EIDAC | Ireland | 500 | ±200 | 2013 | | Caithness – Moray | SSE | Scotland | 800/1200 | ±320 | 2018 | | Western
Link ¹ | NG/SPT | Scotland –
Wales | 2200 | ±600 | 2019 | | NEMO | NG/Elia | Belgium | 1000 | ±320 | 2019 | ¹ Line Commutated Conveter (LCC) technology ² Valves, controls and cooling up-graded in 2012/13 #### **HVDC** schemes in construction | Scheme | Owner | Country | Power
(MW) | DC voltage
(kV) | In service date | |----------|-------------|---------|---------------|--------------------|-----------------| | Eleclink | Eleclink | France | 1000 | ±320 | 2019 | | NSL | NG/Statnett | Norway | 1400 | ±525 | 2021 | | IFA 2 | NG/RTE | France | 1000 | ±320 | 2020 | ### **HVDC** schemes in planning | Scheme | Owner | Country | Power
(MW) | DC voltage
(kV) | In service date | |-----------------------|--------------------------|----------|---------------|--------------------|-----------------| | Viking | NG/Energinet | Denmark | 1400 | ±525 | 2024 | | Shetland ¹ | SSE | Scotland | 600 | ±320 | 2024 | | Greenlink | Element
Power | Ireland | 500 | ±320 | 2023 | | Aquind | Aquind | France | 2 x
1000 | ±320 | 2024 | | Neuconnect | Neuconnect | Germany | 1400 | ±525 | 2024 | | Gridlink | Gridlink | France | 1400 | ±525 | 2024 | | Fablink | Transmission Investments | France | 1200 | ±320 | | ¹ Forms a multi-terminal with Caithness - Moray ### **HVDC** schemes in planning | Scheme | Owner | Country | Power
(MW) | DC voltage
(kV) | In service
date | |----------------------|------------------|-----------------------|---------------|--------------------|--------------------| | Western
Isles | SSE | Scotland | 450 | ±320 | 2023 | | North
Connect | North
Connect | Norway | 1400 | ±525 | 2023 | | Eurolink | NG/TenneT | Netherlands | 1400 | ±320 | 2030 | | Nautalis | NG/Elia | Belgium | 1400 | ±320 | 2028 | | Marex ¹ | Marex | Ireland | 750 | ±320 | 2025 | | Eastern link
E2DC | SPT/NG | Scotland –
England | 2000 | ±500 | 2027 | | Eastern link
E4DC | SSE/NG | Scotland –
England | 2000 | ±500 | 2028 | ### **HVDC** schemes in planning | Scheme | Owner | Country | Power
(MW) | DC voltage
(kV) | In service date | |---------------------------------|---------------------------|---------|---------------|--------------------|-----------------| | Tarchon | Volta partners | Germany | 1400 | ±525 | 2026 | | Cronos | Volta partners | Belgium | 1400 | ±525 | 2026 | | Aminth | Volta partners | Denmark | 1400 | ±525 | 2026 | | Atlantic
super
connection | Atlantic super connection | Iceland | 1000 | | 2024 | ### **OFTO** schemes in planning | Scheme | Owner | Country | Power
(MW) | DC voltage
(kV) | In service date | |---------------------|------------|---------|---------------|--------------------|-----------------| | Norfolk
Vanguard | Vattenfall | | 1800 | | | | Norfolk
Boreas | Vattenfall | | 1800 | | | | Sofia | Innogy | | 1400 | #### 9 ## **Summary** | HVDC Schemes | Number | Power (MW) | |---------------------|--------|------------| | Operational | 7 | 8000 | | Construction | 3 | 3400 | | Planning | 18 | 22500 | | Total | 28 | 33900 | | OFTO Schemes | Number | Power (MW) | |--------------|--------|------------| | Operational | 0 | | | Construction | 0 | | | Planning | 3 | 5000 | | Total | 3 | 5000 | # Issues Related to Multiple HVDC schemes in UK - Multi-infeed conditions, with converters at the same or adjacent PCCs - Multi-terminal systems, converters supplied by different vendors - Converters from multiple suppliers with different control characteristics - Power, reactive power, voltage, frequency - Emergency power control - Black start - Compliance with GB Grid Code and European Grid Code # Issues Related to Multiple HVDC schemes in UK - Concern about mixed HVDC technologies at the same PCC - EWIC (VSC) Western link (LCC) - IFA 1 (LCC) Eleclink (VSC) - BritNed (LCC) Eurolink (VSC) - No issues reported from EWIC or Western Link – so far # Issues Related to changing generation in the UK - Decreasing levels of synchronous generation on the network - Lower inertia - Lower Short Circuit Levels - VSC HVDC may not perform well at SCR<2.0 - Impact of network perturbations, faults, routine switching, etc. - Need to reduce power level - Availability of digital models of generators for interaction studies - Synchronous generators - Non-synchronous generators # Impacts of Adjacent Converters on the Network - Possible adverse control interactions from converters - STATCOMS - Wind Farms - Battery storage - PV arrays - Built by multiple vendors with no coordination - Need for interaction studies to anticipate issues which may arise #### What is needed - Studies - Interaction studies transient and dynamic - Adjacent HVDC converters - HVDC and Other converters - Digital studies - Availability of good "black box" models - Risk of loss of IP by vendors - Hardware in the Loop testing, using RTS - Replicas - Secures IP of vendors #### What is needed – Innovation - Development of new HVDC converter topologies - Lower cost - Lower losses - Smaller footprint OFTO applications - Fault blocking capability - Development of new equipment - Higher current semi-conductors - DC circuit breakers (multi-terminal) - DC/DC converters (supergirds) - Power flow controllers (meshed systems) - DC GIS/GIL non-SF₆ insulant (off-shore) #### What is needed – Innovation - Increased functionality - Operation into low SCR - Synthetic inertia - Fast frequency response - Damping of system resonance conditions - Improved protection systems - Converter protection - Network protection - Transducers - Communication - Use of AI capabilities - Cyber security for major national assets